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1 Department of Informatics, University of Bergen, Norway
{remy.belmonte,pinar.heggernes,pim.vanthof}@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University, UK
{petr.golovach,daniel.paulusma}@durham.ac.uk
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Abstract. The Contractibility problem takes as input two graphs G and H, and the
task is to decide whether H can be obtained from G by a sequence of edge contractions. The
Induced Minor and Induced Topological Minor problems are similar, but the first
allows both edge contractions and vertex deletions, whereas the latter allows only vertex
deletions and vertex dissolutions. All three problems are NP-complete, even for certain fixed
graphs H. We show that these problems can be solved in polynomial time for every fixed H
when the input graph G is chordal. Our results can be considered tight, since these problems
are known to be W[1]-hard on chordal graphs when parameterized by the size of H. To solve
Contractibility and Induced Minor, we define and use a generalization of the classic
Disjoint Paths problem, where we require the vertices of each of the k paths to be chosen
from a specified set. We prove that this variant is NP-complete even when k = 2, but that it
is polynomial-time solvable on chordal graphs for every fixed k. Our algorithm for Induced
Topological Minor is based on another generalization of Disjoint Paths called Induced
Disjoint Paths, where the vertices from different paths may no longer be adjacent. We show
that this problem, which is known to be NP-complete when k = 2, can be solved in polyno-
mial time on chordal graphs even when k is part of the input. Our results fit into the general
framework of graph containment problems, where the aim is to decide whether a graph can
be modified into another graph by a sequence of specified graph operations. Allowing com-
binations of the four well-known operations edge deletion, edge contraction, vertex deletion,
and vertex dissolution results in the following ten containment relations: (induced) minor,
(induced) topological minor, (induced) subgraph, (induced) spanning subgraph, dissolution,
and contraction. Our results, combined with existing results, settle the complexity of each
of the ten corresponding containment problems on chordal graphs.

1 Introduction

We study algorithmic problems that aim to decide whether the structure of a graph H
appears as a “pattern” within the structure of another graph G. The exact definition
of “pattern” depends on the graph operations that are allowed when modifying G into
H. We consider the following four elementary graph operations. The operations vertex
deletion (VD) and edge deletion (ED) simply remove a vertex or an edge, respectively,
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from the graph. The edge contraction (EC) operation, when applied to an edge uv, deletes
the vertices u and v from the graph, and replaces them by a new vertex that is made
adjacent to precisely those vertices to which u or v were adjacent. The vertex dissolution
(VDi) operation can be applied to a vertex v of degree 2 whose two neighbors are not
adjacent; it contracts one of the two edges incident with v. Table 1 shows ten graph
containment relations obtained by combining these four operations. For example, a graph
H is an induced minor of a graph G if H can be obtained from G by a sequence of vertex
deletions and edge contractions (and consequently also vertex dissolutions), but not edge
deletions. The corresponding decision problem, in which G and H form the ordered input
pair (G,H), is called Induced Minor. The other rows in Table 1 are to be interpreted
similarly.

Containment Relation VD ED EC VDi Decision Problem

Minor yes yes yes yes Minor

Induced minor yes no yes yes Induced Minor

Topological minor yes yes no yes Topological Minor

Induced topological minor yes no no yes Induced Topological Minor

Contraction no no yes yes Contractibility

Dissolution no no no yes Dissolution

Subgraph yes yes no no Subgraph Isomorphism

Induced subgraph yes no no no Induced Subgraph Isomorphism

Spanning subgraph no yes no no Spanning Subgraph Isomorphism

Isomorphism no no no no Graph Isomorphism

Table 1. Ten known containment relations in terms of the four mentioned graph operations. The missing
two combinations “no yes yes yes”, and “no yes no yes” correspond to the minor and topological minor
relations, respectively, if we allow an extra operation that removes isolated vertices.

With the exception of Graph Isomorphism, all problems in Table 1 are known to be
NP-complete (cf. [29]). By the results of Robertson and Seymour [33], Grohe et al. [21],
and Golovach et al. [19], Minor, Topological Minor, and Dissolution are in FPT
with parameter |VH |. The problems Spanning Subgraph Isomorphism and Graph
Isomorphism require the input graphs G and H to have the same size, and hence they
are trivially in FPT with parameter |VH |. The problems Subgraph Isomorphism and
Induced Subgraph Isomorphism are trivially in XP, as they can be solved by brute
force checking all vertex subsets of G of size |VH |. However, both problems are W[1]-hard
with parameter |VH |, as they both generalize the well-known Clique problem, which is
known to be W[1]-complete when parameterized by the size of the desired clique [10]. In
summary, all of the above problems are polynomial-time solvable for every fixed graph H.

In contrast, the problems that we focus on in this paper are harder. In particular, there
exist graphs H such that H-Contractibility, H-Induced Minor, and H-Induced
Topological Minor are NP-complete, where the “H-” in front of the problem names
indicates the variant of the problems where the graph H is fixed and only G is part of
the input. Moreover, the problems Contractibility, Induced Minor, and Induced
Topological Minor are W[1]-hard with parameter |VH | even on chordal graphs. We
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prove that these problems are in XP with parameter |VH | on chordal graphs. This implies
that they can be solved in polynomial time on chordal graphs for every fixed graph H, as
the class of chordal graphs is closed under edge contractions. Before we explain our results
in more detail in the next section, we give an overview of known results on these problems.

ForH-Contractibility, polynomial-time solvable and NP-complete cases, depending
on H, can be found in a series of papers started by Brouwer and Veldman [7], followed by
Levin et al. [27, 28], and Van ’t Hof et al. [22]. The smallest NP-complete cases are when
H is a path or a cycle on 4 vertices [7]. Fellows et al. [13] gave polynomial-time solvable
and NP-complete cases for H-Induced Minor. The smallest known NP-complete case is
a graph H on 68 vertices [13]. Even the question whether this problem is polynomial-time
solvable for every fixed tree H is still open. Lévêque et al. [26] gave both polynomial-time
solvable and NP-complete cases for H-Induced Topological Minor. This problem is
NP-complete when H is a complete graph on 5 vertices, but its complexity is open when
H is a complete graph on 4 vertices.

The following results, where |VH | is the parameter, are known for the case where the
input graph G has a particular structure. The problems Contractibility and Induced
Minor are in FPT on planar graphs by the respective results of Kamiński and Thilikos
[24], and Fellows et al. [13]. Fiala et al. [11] showed that Induced Topological Minor is
in XP on claw-free graphs, whereas Contractibility remains NP-complete on claw-free
graphs even when H is a path on seven vertices [12]. Belmonte et al. [2] and Golovach et
al. [19] independently proved that Contractibility is in XP on split graphs, which form
a proper subclass of chordal graphs. In fact, all ten problems of Table 1 can be solved in
polynomial time on split graphs for every fixed H [19]. However, whereas six of these prob-
lems are in FPT on split graphs, our three problems Contractibility, Induced Minor,
Induced Topological Minor, as well as the problem Induced Subgraph Isomor-
phism, are W[1]-hard on split graphs, and hence on chordal graphs [19]. This motivates
our study of these three problems on chordal graphs with respect to XP algorithms.

Chordal graphs are the graphs in which every cycle of length at least four contains a
chord. Chordal graphs constitute one of the most famous and well-studied graph classes, as
they have a large number of practical applications in fields like sparse matrix computations,
computational biology, computer vision, and VLSI design (cf. [17, 20, 34]). This graph class
properly contains other well-known graph classes, like forests, interval graphs, and split
graphs (cf. [6, 32]).

2 Our Results and Methodology

Table 2 gives a survey on the classical and the parameterized complexity of the ten con-
tainment problems from Table 1 on chordal graphs. We replaced “chordal” by “general”
or “split” wherever possible in order to present the results in their strongest form. All the
results on chordal graphs in Table 2 are new, and we prove them in the remainder of this
paper. The remaining results in the table, namely the ones on split graphs and general
graphs, are known and have already been mentioned. Section 3 contains the necessary ad-
ditional terminology and a (straightforward) proof showing that Minor, Topological
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Minor, and Subgraph Isomorphism are in linear-time FPT with parameter |VH | on
chordal graphs.

Containment Problem Parameter: |VH |
Minor linear-time FPT on chordal; cubic-time FPT in general

Induced Minor XP on chordal; W[1]-hard on split

Topological Minor linear-time FPT on chordal; cubic-time FPT in general

Induced Topological Minor XP on chordal; W[1]-hard on split

Contractibility XP on chordal; W[1]-hard on split

Dissolution linear-time FPT in general

Subgraph Isomorphism linear-time FPT on chordal; cubic-time FPT in general

Induced Subgraph Isomorphism XP in general; W[1]-hard on split

Spanning Subgraph Isomorphism constant-time FPT in general

Graph Isomorphism constant-time FPT in general

Table 2. The parameterized complexity of the ten problems from Table 1 on general graphs, chordal
graphs and split graphs. All the results on chordal graphs are new.

The three results from Table 2 that are left to prove are that Contractibility,
Induced Minor, and Induced Topological Minor are in XP with parameter |VH |
on chordal graphs. In order to obtain these results, we design algorithms for solving two
generalizations of the classical Disjoint Paths problem on chordal graphs; these might
be of interest independently of the studied graph containment problems.

In order to solve Contractibility and Induced Minor, we first need to solve some
other problems. In Section 4, we introduce the following generalization of the Disjoint
Paths problem. A terminal pair in a graph G = (V,E) is a specified pair of vertices s and
t called terminals, and the domain of a terminal pair (s, t) is a specified subset U ⊆ V
containing both s and t. We say that two paths, each of which is between some terminal
pair, are vertex-disjoint if they have no common vertices except possibly the vertices of
the terminal pairs. This leads to the following decision problem.

Set-Restricted Disjoint Paths
Instance: A graph G, k terminal pairs (s1, t1), . . . , (sk, tk) in G, and their respective

domains U1, . . . , Uk.
Question: Does G contain k pairwise vertex-disjoint paths P1, . . . , Pk such that Pi is

a path between si and ti using only vertices from Ui, for i = 1, . . . , k?

Note that the domains U1, . . . , Uk are not necessarily pairwise disjoint. If we let every
domain contain all vertices of G, we obtain exactly the Disjoint Paths problem.

The Set-Restricted Disjoint Paths problem is NP-complete on chordal, even in-
terval, graphs, since Disjoint Paths is NP-complete on interval graphs [30]. Robertson
and Seymour [33] showed that Disjoint Paths is in FPT with parameter k; their algo-
rithm runs in O(|VG|3) time for every fixed k. In contrast, we show that the more general
Set-Restricted Disjoint Paths problem is NP-complete even when k = 2. We prove
that on chordal graphs Set-Restricted Disjoint Paths is in XP with parameter k.
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We then consider disjoint trees, or equivalently, disjoint connected subgraphs, instead of
disjoint paths. This leads to the following problem.

Set-Restricted Disjoint Connected Subgraphs
Instance: A graph G, k pairwise disjoint nonempty vertex subsets S1, . . . , Sk of G,

and their respective domains U1, . . . , Uk.
Question: Does G contain k pairwise vertex-disjoint connected subgraphs G1, . . . , Gk

such that Si ⊆ VGi ⊆ Ui, for 1 ≤ i ≤ k?

Choosing each domains Ui to be VG yields the Disjoint Connected Subgraphs
problem, which was introduced by Robertson and Seymour [33]. This problem is NP-
complete even when k = 2 and min{|S1|, |S2|} = 2 [23]. Moreover, it is NP-complete on
split graphs, and hence on chordal graphs, when k = 2. Robertson and Seymour [33]
showed that it is in FPT with parameter |S1| + |S2| + · · · + |Sk|. We show that the more
general Set-Restricted Disjoint Connected Subgraphs problem is in XP with this
parameter when restricted to chordal graphs.

In Section 5, we show how to use our XP algorithm for Set-Restricted Disjoint
Connected Subgraphs as a subroutine for solving Contractibility and Induced
Minor on chordal graphs in time |VG|O(|VH |2).

In Section 6, we turn our attention to Induced Topological Minor. To solve this
problem, we use another generalization of Disjoint Paths. We say that two paths P1

and P2 between two terminal pairs in a graph G = (V,E) are mutually induced if they
are vertex-disjoint and no vertex of P1 is adjacent to a vertex of P2, except possibly the
terminal vertices. Note that each path is not necessarily induced (chordless), but we may
assume this without loss of generality. This leads to the following decision problem.

Induced Disjoint Paths
Instance: A graph G and k terminal pairs (s1, t1), . . . , (sk, tk) in G.
Question: Does G contain k mutually induced paths P1, . . . , Pk such that Pi

is a path between si and ti, for i = 1, . . . , k?

The Induced Disjoint Paths problem is already NP-complete for k = 2, due to a
result of Bienstock [3]. Hence, on general graphs this problem is harder than Disjoint
Paths, which is in FPT with parameter k as mentioned earlier. Note that on general
graphs, Induced Disjoint Paths generalizes Disjoint Paths; subdividing the edges of
an input graph of the latter problem yields an instance of the former problem. However,
this is not true on chordal graphs, as subdividing the edges of a chordal graph might
result in a graph that is not chordal. Interestingly, on chordal graphs the two problems
completely swap complexity: although Disjoint Paths is NP-complete on chordal graphs
as mentioned above, we show that Induced Disjoint Paths is polynomial-time solvable
on chordal graphs. We use the corresponding algorithm as a subroutine in our algorithm
for solving Induced Topological Minor on chordal graphs in time O(|EH |·|VG||VH |+3).

In Section 7, we give another application of our algorithm for solving Set-Restricted
Disjoint Paths by using it as a subroutine to solve the Set-Restricted Disjoint Con-
nected Subgraphs problem on interval graphs. We conclude the paper by mentioning
some open problems.
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3 Preliminaries

All graphs considered in this paper are finite, undirected, and have neither self-loops nor
multiple edges. All the problems in this paper have a graph G as a part of the input.
Throughout the paper, we use n and m to denote the number of vertices and edges of this
input graph G, respectively.

Let G = (V,E) be a graph. If the vertex and edge sets of a graph G are not specified,
we use VG and EG to denote these sets, respectively. A subset U ⊆ V is a clique if every
pair of vertices in U are adjacent. A vertex is simplicial if its neighbors form a clique. We
write G[U ] to denote the subgraph of G induced by U ⊆ V . Two sets U,U ′ ⊆ V are called
adjacent if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ E. A path between
vertices u and v is called a (u, v)-path. The set of vertices of a path P is denoted by VP .

The subdivision of an edge e = uw in a graph removes e, adds a new vertex v and two
new edges uv and vw. We say that a graph G is a subdivision of a graph H if G can be
obtained from H by a sequence of edge subdivisions. We observe that an edge subdivision
is the reverse operation of a vertex dissolution. Hence, H is an (induced) topological minor
of G if and only if an (induced) subgraph of G is a subdivision of H.

An H-witness structure of G is a partition of V into |VH | nonempty sets W (x), one
set for each x ∈ VH , called H-witness sets, such that

(i) each W (x) induces a connected subgraph of G; and

(ii) for all x, y ∈ VH with x 6= y, sets W (x) and W (y) are adjacent in G if and only if x
and y are adjacent in H.

Observe that H is a contraction of G if and only if G has an H-witness structure: H
can be obtained from G by contracting the edges in each H-witness set until a single
vertex remains in each of them. This view provides an intuition on the hardness of the
Contractibility problem: it is a partition problem rather than a subset problem.

A tree decomposition of G is a pair (T ,X ), where X is a collection of subsets of V ,
called bags, and T is a tree whose vertices, called nodes, are the sets of X , such that the
following three properties are satisfied.

–
⋃

X∈X X = V ,

– for each edge uv ∈ E, there is a bag X ∈ X with u, v ∈ X,

– for each x ∈ V , the set of nodes containing x forms a connected subtree of T .

The width of a tree decomposition (T ,X ) is the size of a largest bag in X minus 1. The
treewidth of G is the minimum width over all possible tree decompositions of G.

A chord of a path or a cycle is an edge between two non-consecutive vertices of the path
or the cycle. A graph is chordal if every cycle of it on at least four vertices has a chord.
It is not difficult to see that the class of chordal graphs is closed under vertex deletions
and edge contractions but not under edge deletions. Chordal graphs can be recognized in
linear time [35]. Every chordal graph contains at most n maximal cliques, and, if it is not
a complete graph, at least two non-adjacent simplicial vertices [9]. A graph G is chordal
if and only if it has a tree decomposition whose set of bags is exactly the set of maximal
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cliques of G [16]. Such a tree decomposition is called a clique tree and can be constructed
in linear time [4].

The complexity classes XP and FPT are defined in the framework of parameterized
complexity. A parameterized problem Q belongs to the class XP if for each instance (I, k)
it can be decided in |I|f(k) time whether (I, k) ∈ Q, where f is a function that depends
only on the parameter k, and |I| denotes the size of I. If a problem belongs to XP, then it
can be solved in polynomial time for every fixed k. Hence, if a problem is NP-complete for
some fixed value of k, then it is unlikely to belong to XP. If a parameterized problem can
be solved by an algorithm with running time f(k) |I|O(1), then the problem belongs to the
class FPT. A problem is in cubic-time FPT, linear-time FPT, or constant-time FPT if it
can be solved in time f(k) |I|3, in time f(k) |I| or in time f(k), respectively. Between FPT
and XP is a hierarchy of parameterized complexity classes, FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
W[P] ⊆ XP, where hardness for one of the W-classes is considered to be strong evidence
of intractability with respect to the class FPT. For formal background on parameterized
complexity, we refer to the textbooks by Downey and Fellows [10], Flum and Grohe [14],
and Niedermeier [31].

Let u, v, w be three distinct vertices in a graph such that uv and vw are edges. The
operation that removes the edges uv and vw, and adds the edge uv in the case u and w are
not adjacent, is called a lift. A graph G contains H as a immersion if H can be obtained
from G by a sequence of vertex deletions, edge deletions, and lifts. The corresponding
decision problem is called Immersion. Grohe et al. [21] showed that Immersion is in
FPT with parameter |VH |; their running time is O(n3) for every fixed H. Proposition 1
below proves that this problem can be solved in linear time on chordal graphs, and also
proves the linear-time FPT results on Minor, Topological Minor, and Subgraph
Isomorphism that were stated in Table 2.

Proposition 1. The problems Minor, Topological Minor, Subgraph Isomorphism,
and Immersion can be solved in f(|VH |)·(n+m) time on chordal graphs for some function
f that depends only on |VH |.

Proof. Let G be a chordal input graph. A clique C of maximum size in G can be found
in O(n+m) time [35]. If |C| ≥ |VH |, then G[C], and hence G, contains H as a subgraph
and thus as a minor, topological minor, and immersion. If |C| < |VH |, then the treewidth
of G is |C| − 1 < |VH | − 1 by the definition of a clique tree. Because H is fixed, the
treewidth of G is bounded by a constant. A seminal result of Courcelle [8] states that on
every class of graphs of bounded treewidth, every problem expressible in monadic second-
order logic, i.e., the fragment of second-order logic where quantified relation symbols must
have arity 1, can be solved in O(n) time. For fixed H, it is known that the problems H-
Subgraph Isomorphism, H-Minor, H-Topological Minor, and H-Immersion can
all be expressed in monadic second-order logic; in particular we refer to Grohe et al. [21]
for the case of immersions. Since a clique tree can be constructed in O(n+m) time, this
completes the proof of Proposition 1. ut
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4 Set-Restricted Disjoint Paths

We start with the following result.

Theorem 1. Set-Restricted Disjoint Paths is NP-complete even when k = 2.

Proof. We reduce from the NP-complete 3-Sat problem [15]. It is well known that this
problem remains NP-complete when each Boolean variable occurs at most twice as a posi-
tive literal and at most twice as a negative literal. We use this variant for our reduction. Let
Φ be an instance of 3-Sat with variables x1, . . . , xn and clauses C1, . . . , Cm. We construct
a graph G as follows; see also Figure 1.

• Add two vertices s and t.

• Add n+ 1 vertices v0, . . . , vn and edges sv0 and vnt.

• For i = 1, . . . , n, add vertices x
(1)
i , x

(2)
i , x

(1)
i , x

(2)
i , yi, yi and edges vi−1x

(1)
i , x

(1)
i yi, yix

(2)
i ,

x
(2)
i vi, vi−1x

(1)
i , x

(1)
i yi, yix

(2)
i , x

(2)
i vi.

Let Qi = vi−1x
(1)
i yix

(2)
i vi and Qi = vi−1x

(1)
i yix

(2)
i vi.

• Add m+ 1 vertices u0, . . . , um and edges su0 and umt.

• For each clause Cj and each literal z in Cj :

– if z = xi, then add edges uj−1x
(1)
i , ujx

(1)
i if z is the first occurrence of the literal

xi in Φ, and edges uj−1x
(2)
i , ujx

(2)
i if z is the second occurrence.

– if z = xi, then add edges uj−1x
(1)
i , ujx

(1)
i if z is the first occurrence of the literal

xi in Φ, and edges uj−1x
(2)
i , ujx

(2)
i if z is the second occurrence.

Let Rj(z) be the obtained (uj−1, uj)-path of length two.

• Let U1 = VG \ {u0, . . . , um}.

• Let U2 = {s, t} ∪ {u0, . . . , um} ∪ {x(1)1 , . . . , x
(1)
n } ∪ {x(2)1 , . . . , x

(2)
n }.

We prove that Φ can be satisfied if and only if there are two vertex-disjoint (s, t)-paths P1

and P2 in G such that VP1 ⊆ U1 and VP2 ⊆ U2; recall that we allow such paths to have
common end-vertices, as is the case here.

First suppose that the variables x1, . . . , xn have a truth assignment that satisfies Φ.
We construct P1 as follows. For each i ∈ {1, . . . , n}, we choose Qi if xi = false, and Qi

if xi = true. Afterwards, we concatenate the chosen paths. We get a (v0, vn)-path, and
construct the (s, t)-path P1 by adding the edges sv0 and vnt. By construction, VP1 ⊆ U1.
We construct P2 as follows. For each j ∈ {1, . . . ,m}, the clause Cj can be assumed to
contain a literal z = true, and we select such a literal and the corresponding paths Rj(z).
Afterwards, we concatenate the chosen paths. We get a (u0, um)-path, and construct the
(s, t)-path P2 by adding the edges su0 and umt. By construction, VP2 ⊆ U2. If P2 contains

Rj(z) = uj−1x
(1)
i uj or Rj(z) = uj−1x

(2)
i uj as a subpath, then xi = true implying that Qi

is a subpath of P1. Hence, x
(1)
i , x

(2)
i /∈ VP1 . We conclude that P1 and P2 are vertex-disjoint.
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x(1)
n

ts u0 um

v0 vn

x
(1)
1 x

(2)
1 x

(1)
n x

(2)
n

x
(2)
1

y1 yn

yny1 x(2)
nx

(1)
1

Fig. 1. The graph G; the vertices of U1 and U2 are shown by white squares and black circles, respectively.
A white square with a black circle inside indicates that the vertex belongs to both sets.

Now suppose that there are vertex-disjoint (s, t)-paths P1 and P2 in G, such that
VP1 ⊆ U1 and VP2 ⊆ U2. Note that for each i ∈ {1, . . . , n}, either Qi or Qi is a subpath of
P1. If Qi is a subpath of P1, then we set xi = false, and xi = true otherwise. Note that
for each j ∈ {1, . . . ,m}, the path P2 contains Rj(z) as a subpath for some literal z in Cj . If
z = xi for some variable xi, then our assumption that P1 and P2 are vertex-disjoint implies
that Qi is a subpath of P1. Hence, xi = true, and consequently z = true. Similarly, if
z = xi for some variable xi, then Qi is a subpath of P1 and xi = false, and consequently,
z = true. Hence, each clause Cj is satisfied by this truth assignment, and Φ = true, as
desired. This completes the proof of Theorem 1. ut

We apply dynamic programming to prove that Set-Restricted Disjoint Paths
can be solved in polynomial time on chordal graphs for every fixed integer k. The first
key observation is that the existence of k disjoint paths is equivalent to the existence of
k disjoint induced, i.e. chordless, paths. The second key observation is that every induced
path contains at 0, 1, or 2 vertices from each clique. Our algorithm solves the decision
problem, but it can easily be modified to produce the desired paths if they exist.

Kloks [25] showed that every tree decomposition of a graph can be converted in linear
time to a nice tree decomposition, such that the size of the largest bag does not increase,
and the total size of the tree is linear in the size of the original tree. A tree decomposition
(T ,X ) is nice if T is a binary tree with root Xr such that the nodes of T are of the
following four types:

1. a leaf node X is a leaf of T and has size |X| = 1;

2. an introduce node X has one child X ′ with X = X ′ ∪ {v} for some vertex v ∈ VG;

3. a forget node X has one child X ′ with X = X ′ \ {v} for some vertex v ∈ VG;

4. a join node X has two children X ′ and X ′′ with X = X ′ = X ′′.

Applying the conversion algorithm of Kloks [25] on a clique tree of a chordal graph G leads
to a nice tree decomposition of G with the additional property that each bag is a (not
necessary maximal) clique in G. We use such nice tree decompositions of chordal graphs
in our algorithm for Set-Restricted Disjoint Paths, which we describe next.

9



Let k be a positive integer, and let G be a chordal graph with k terminal pairs
(s1, t1), . . . , (sk, tk) that have domains U1, . . . , Uk, respectively. If G is disconnected, we
check for each terminal pair (si, ti) whether si and ti belong to the same connected com-
ponent. If not, then we return No. Otherwise, we consider each connected component and
its set of terminals separately. Consequently, we assume from now on that G is connected.

We construct a nice tree decomposition (T ,X ) of G with root Xr, such that each bag
is a clique in G. For every node Xi ∈ VT , we denote by Ti the subtree of T with root Xi

induced by Xi and all its descendants. We define Gi = G[
⋃

j∈VTi
Xj ], i.e., the subgraph of

G induced by the set of all vertices of G appearing in bags of Ti.
Our dynamic programming algorithm keeps a table for each node of T . For a node Xi,

the table stores a collection of records

R = ((State1, R1), . . . , (Statek, Rk)),

where R1, . . . , Rk ⊆ Xi are ordered sets without common vertices except (possibly) termi-
nals, where Rj ⊆ Uj and 0 ≤ |Rj | ≤ 2 for j ∈ {1, . . . , k}, and where each Statej can have
one of the following four values:

Not initialized, Started from s, Started from t, or Completed.

These records correspond to the partial solution of Set-Restricted Disjoint Paths
for Gi with the following properties.

– If Statej = Not initialized, then sj , tj /∈ VGi . If Rj = ∅, then (sj , tj)-paths have no
vertices in Gi in the partial solution. If Rj = 〈z〉, then z is the unique vertex of a
(sj , tj)-path in Gi in the partial solution. If Rj = 〈z1, z2〉, then z1, z2 are vertices in a
(sj , tj)-path, z1 is the predecessor of z2 in the path, and this path has no other vertices
in Gi.

– If Statej = Started from s, then sj ∈ VGi , tj /∈ VGi and Rj contains either one or two
vertices. If Rj = 〈z〉, then the partial solution contains an (sj , z)-path with the unique
vertex z ∈ Xi. If Rj = 〈z1, z2〉, then the partial solution contains an (sj , z2)-path such
that z1 is the predecessor of z2 with exactly two vertices z1, z2 ∈ Xi.

– If Statej = Started from t, then sj /∈ VGi , tj ∈ VGi and Rj contains either one or two
vertices. If Rj = 〈z〉, then the partial solution contains a (z, tj)-path with the unique
vertex z ∈ Xi. If Rj = 〈z1, z2〉, then the partial solution contains an (z1, tj)-path such
that z2 is the successor of z1 with exactly two vertices z1, z2 ∈ Xi.

– If Statej = Completed, then sj ∈ VGi , tj ∈ VGi . The partial solution in this case
contains an (sj , tj)-path, and Rj is the set of vertices of this path in Xi. If Rj = 〈z1, z2〉,
then z1 is the predecessor of z2 in the path.

The tables are constructed and updated as follows.

Leaf nodes. Let Xi = {u} be a leaf node of T . Then the table for Xi stores all records
R = ((State1, R1), . . . , (Statek, Rk)) with the following properties. If u is a terminal, then
for j = 1, . . . , k,

– if u = sj , then Statej = Started from s and Rj = 〈u〉;
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– if u = tj , then Statej = Started from t and Rj = 〈u〉; and
– if u 6= sj and u 6= tj , then Statej = Not initialized and Rj = ∅.

If u is not a terminal, then Statej = Not initialized for j = 1, . . . , k, and either Rj = ∅ for
all j ∈ {1, . . . , k}, or exactly one set Rj = 〈u〉 if u ∈ Uj and other sets are empty.

Introduce nodes. Let Xi be an introduce node with child Xi′ , and let Xi = Xi′ ∪ {u}
for some u ∈ VG. We consider two cases.

Case 1. u is a terminal.
For each record R′ = ((State′1, R

′
1), . . . , (State

′
k, R

′
k)) from the table for Xi′ , we either

modify R′ and include the modified record R = ((State1, R1), . . . , (Statek, Rk)) in the
table for Xi, or we discard R′. If there exists an index j such that u ∈ {sj , tj} and
|R′j | = 2, then R′ is discarded. Otherwise,

– if u = sj and State′j = Not initialized, then Statej = Started from s; if R′j = ∅, then
Rj = 〈u〉, and if R′j = 〈z〉, then Rj = 〈u, z〉;

– if u = sj and State′j = Started from t, then Statej = Completed; if R′j = 〈z〉, then
Rj = 〈z, u〉;

– if u = tj and State′j = Not initialized, then Statej = Started from t; if R′j = ∅, then
Rj = 〈u〉, and if R′j = 〈z〉, then Rj = 〈z, u〉;

– if u = tj and State′j = Started from s, then Statej = Completed; if R′j = 〈z〉 then
Rj = 〈z, u〉; and

– if u 6= sj and u 6= tj , then Statej = State′j and Rj = R′j .

Case 2. u is not a terminal.
We include all records from the table for Xi′ in the table for Xi. In addition, we add new
records to the table for Xi according to the following rules. For each j ∈ {1, . . . , k} with
u ∈ Uj , we consider the records R′ = ((State′1, R

′
1), . . . , (State

′
k, R

′
k)) from the table for

Xi′ with |R′j | ≤ 1, and do the following:

– if State′j = Not initialized and R′j = 〈z〉, then we add to the table for Xi two records
such that Statel = State′l and Rl = R′l for l ∈ {1, . . . , k}, l 6= j, Statej = State′j , and
Rj = 〈z, u〉 for the first record and Rj = 〈u, z〉 for the second;

– if State′j = Not initialized and R′j = ∅, then we include in the table for Xi the record
such that Statel = State′l and Rl = R′l for l ∈ {1, . . . , k}, l 6= j, Statej = State′j , and
Rj = 〈u〉;

– if State′j = Started from s and R′j = 〈z〉, then we add to the table for Xi the record
such that Statel = State′l and Rl = R′l for l ∈ {1, . . . , k}, l 6= j, Statej = State′j , and
Rj = 〈z, u〉;

– if State′j = Started from t and R′j = 〈z〉, then we add to the table for Xi the record
such that Statel = State′l and Rl = R′l for l ∈ {1, . . . , k}, l 6= j, Statej = State′j , and
Rj = 〈u, z〉.

Forget nodes. Let Xi be a forget node with child Xi′ , and let Xi = Xi′ \ {u} for some
u ∈ VG. Every record R′ = ((State′1, R

′
1), . . . , (State

′
k, R

′
k)) from the table for Xi′ with

u /∈ R′j for all j ∈ {1, . . . , k} is included in the table for Xi. For each record R′ =
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((State′1, R
′
1), . . . , (State

′
k, R

′
k)) from the table for Xi′ such that u ∈ R′j for some j ∈

{1, . . . , k}, we either modify it and include the modified record R = ((State1, R1), . . . ,
(Statek, Rk)) in the table for Xi, or we discard R′, using the following rules:

– for all j ∈ {1, . . . , k}, Statej = State′j ;
– for j ∈ {1, . . . , k}, if u /∈ R′j , then Rj = R′j ;
– for j ∈ {1, . . . , k}, if u ∈ R′j and Statej = Started from s, then we discard the record

if R′j = 〈u〉 or R′j = 〈z, u〉, and we set Rj = 〈z〉 if R′j = 〈u, z〉;
– for j ∈ {1, . . . , k}, if u ∈ R′j and Statej = Started from t, then we discard the record

if R′j = 〈u〉 or R′j = 〈u, z〉, and we set Rj = 〈z〉 if R′j = 〈z, u〉;
– for j ∈ {1, . . . , k}, if u ∈ R′j and Statej = Not initialized, then we discard the record;
– for j ∈ {1, . . . , k}, if u ∈ R′j and Statej = Completed, then Rj = R′j \ 〈u〉.

Join nodes. Let Xi be a join node with children Xi′ and Xi′′ . For each pair of records
R′ = ((State′1, R

′
1), . . . , (State

′
k, R

′
k)) and R′′ = ((State′′1, R

′′
1), . . . , (State′′k, R

′′
k)) from the

tables for Xi′ and Xi′′ , respectively, such that R′j = R′′j for all j ∈ {1, . . . , k}, we construct
the record R = ((State1, R1), . . . , (Statek, Rk)) and include it in the table for Xi:

– for j = 1, . . . , k, Rj = R′j = R′′j ;
– for j = 1, . . . , k, if State′j = State′′j , then Statej = State′j = State′′j ;
– for j = 1, . . . , k, if State′j = Not initialized, then Statej = State′′j ;
– for j = 1, . . . , k, if State′′j = Not initialized, then Statej = State′j ;
– for j = 1, . . . , k, if State′j = Completed or State′′j = Completed, then Statej = Com-

pleted;
– for j = 1, . . . , k, if State′j = Started from s and State′′j = Started from t or
State′j = Started from t and State′′j = Started from s, then Statej = Completed.

The algorithm computes these tables for all nodes of T , starting from the leaves. Fi-
nally, the table for the root Xr is constructed. The algorithm returns Yes if the table for Xr

contains a recordR = ((State1, R1), . . . , (Statek, Rk)) with State1 = . . . = Statek = Com-
pleted, and it returns No otherwise.

Theorem 2. The Set-Restricted Disjoint Paths problem can be solved in nO(k) time
on chordal graphs.

Proof. The correctness of the algorithm follows from its description, keeping in mind that
we are looking for k disjoint induced paths, each of which contains at most two vertices of
every clique. For the running time, recall that a clique tree can be constructed in linear
time [4] and that it can be converted in linear time to a nice tree decomposition in which
each bag corresponds to a clique [25]. It remains to observe that each table contains at
most nO(k) records, since each Rj has at most two elements. Since there are O(n) nodes
in T and hence O(n) tables in total, our algorithm runs in nO(k) time. ut

For our purposes, we need to generalize Theorem 2 in the following way.

Corollary 1. The Set-Restricted Disjoint Connected Subgraphs problem can be
solved in nO(p) time on chordal graphs, where p =

∑k
i=1 |Si| is the sum of the sizes of the

terminal sets.
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Proof. Let G = (V,E) be a chordal graph on n vertices with terminal sets S1, . . . , Sk
and corresponding domains U1, . . . , Uk. To solve Set-Restricted Disjoint Connected
Subgraphs on G, we check whether G contains pairwise vertex-disjoint trees T1, . . . , Tk,
such that Ti contains all vertices of Si and such that all its other vertices are from Ui for
i = 1, . . . , k. For this purpose, we simply generate all collections of k subsets of V that
can possibly give us the desired subtrees T1, . . . , Tk. We need to argue that it is sufficient
to generate collections that consist of O(p) vertices.

Let pi = |Si| for i = 1, . . . , k. Observe that every inclusion minimal subtree Ti of G
with Si ⊆ VTi contains at most pi − 2 vertices of degree at least 3 that are not in Si.
Repeatedly contracting every edge in Ti that is incident with a vertex of degree 2 in Ti,
results in a reduced tree T ′i with at most 2pi−2 vertices, and consequently, at most 2pi−3
edges. Every edge in T ′i corresponds to a path in G. Hence we can guess the 2pi−2 vertices
of each possible reduced tree T ′i , and then expand each edge of the tree to a path in G
if possible, to obtain every possible tree Ti, using our algorithm for Set-Restricted
Disjoint Paths. Consequently, we proceed as follows.

We iterate over every collection of k pairwise disjoint sets X1, . . . , Xk with Xi ⊆ Ui \Si
and |Xi| ≤ pi − 2 for i = 1, . . . , k. In each collection, for each Si ∪Xi, we generate the set
Ti of all possible trees with vertex set Si ∪Xi such that the vertices of Xi are of degree at
least 3. Every edge st in a tree from Ti gives us a terminal pair (s′, t′) with domain Ui. We
now pick one tree T ′i for i = 1, . . . , k. This leads to a choice of trees T ′1, . . . , T

′
k, where each

T ′i corresponds to a set of terminal pairs with domain Ui as we explained above. We call
such a choice a T ′-combination. Let (s′1, t

′
1), . . . , (s

′
k′ , t
′
k′) denote the union of these k sets

of terminal pairs and denote the domain of (s′h, t
′
h) by U ′h for h = 1, . . . , k′. We note that

U ′h = Ui if and only if (s′h, t
′
h) is a terminal pair corresponding to an edge in T ′i . We also

note that k′ ≤
∑k

i=1(2pi − 3), because each T ′i has at most 2pi − 3 edges. We now solve
the Set-Restricted Disjoint Paths problem for this instance. If we find a solution,
then we return Yes. Otherwise, we choose another T ′-combination and solve the resulting
instance, until we have considered all T ′-combinations.

In order to prove that the above procedure leads to a total running time of nO(p),
we observe that there are nO(p) possibilities to choose the sets X1, . . . , Xk. Moreover, by
Cayley’s formula, we have at most (2pi − 2)2pi−4 ≤ p2pi different possibilities to join the
vertices of Si ∪Xi by paths to obtain a tree. For each choice, we check the existence of at
most

∑k
i=1(2pi − 3) ≤ 2p disjoint paths, which can be done in nO(2p) time by Theorem 2.

Hence, the total running time is nO(p) · p2p1+···+2pk · nO(2p) = nO(p). This completes our
proof. ut

5 Contractions and Induced Minors in Chordal Graphs

First, in Section 5.1 below, we give a structural characterization of chordal graphs that
contain a fixed graph H as a contraction. Then, in Section 5.2, we present our XP algorithm
for solving Contractibility on chordal graphs, and show how it can be used to solve
Induced Minor as well.
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5.1 Properties

Throughout Section 5.1, let G be a connected chordal graph, let TG be a clique tree of G,
and let H be a graph with VH = {x1, . . . , xk}. For a set of vertices A ⊆ VG, we let G(A)
denote the induced subgraph of G obtained by recursively deleting simplicial vertices that
are not in A. Since every leaf in every clique tree contains at least one simplicial vertex,
we immediately obtain Lemma 1 below. This lemma, in combination with Lemma 2, is
crucial for the running time of our algorithm.

Lemma 1. For every set A ⊆ VG, every clique tree of G(A) has at most |A| leaves.

Lemma 2. The graph H is a contraction of G if and only if there is a set A ⊆ VG such
that |A| = k and H is a contraction of G(A).

Proof. First suppose that H is a contraction of G. Let W be an H-witness structure of G.
For each i ∈ {1, . . . , k}, we choose an arbitrary vertex ai ∈W (xi), and let A = {a1, . . . , ak}.
Suppose that G has a simplicial vertex v /∈ A, and assume without loss of generality
that v ∈ W (x1). Because v 6= a1 and a1 ∈ W (x1), we find that |W (x1)| ≥ 2. Hence,
W (x1) contains a vertex u adjacent to v. The graph G′, obtained from G by deleting v, is
isomorphic to the graph obtained from G by contracting uv, since v is simplicial. Because
u and v belong to the same witness set, namely W (x1), this implies that H is a contraction
of G′. Using these arguments inductively, we find that H is a contraction of G(A).

Now suppose that A is a subset of VG with |A| = k, and that H is a contraction
of G(A). Deleting a simplicial vertex v in a graph is equivalent to contracting an edge
incident with v. This means that G(A) is a contraction of G. Because H is a contraction
of G(A) and contractibility is a transitive relation, we conclude that H is a contraction of
G as well. ut

For a subtree T of TG, we say that a vertex v ∈ VG is an inner vertex for T if v only
appears in the maximal cliques of G that are nodes of T . By I(T ) ⊆ VG we denote the
set of all inner vertices for T . For a subset S ⊆ VG, let TS be the unique minimal subtree
of TG that contains all maximal cliques of G that have at least one vertex of S; we say
that a vertex v is an inner vertex for S if v ∈ I(TS), and we set I(S) = I(TS). Lemma 4
below provides an alternative and useful structural description of G if it contains H as a
contraction. We need the following lemma to prove Lemma 4.

Lemma 3. Let S ⊆ VG and let T be a subgraph of G that is a tree such that S ⊆ VT ⊆
I(S). Then K ∩ VT 6= ∅ for each node K of TS.

Proof. Let K be a node of TS . If K ∩ S 6= ∅, then clearly K ∩ VT 6= ∅. Suppose that
K ∩ S = ∅. Because TS is the unique minimal subtree of TG that contains all maximal
cliques of G that have at least one vertex of S, we find that K separates two nodes K1

and K2 in TS for which K1 ∩ S 6= ∅ and K2 ∩ S 6= ∅. This means that K separates two
vertices u ∈ K1 ∩ S and v ∈ K2 ∩ S in G. Since T is a tree and u, v ∈ VT , at least one
vertex of T must be in K. ut
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Let l denote the number of leaves in TG; if TG consists of one node, then we say that
this node is a leaf of TG.

Lemma 4. The graph H is a contraction of G if and only if there are pairwise disjoint
nonempty sets of vertices S1, . . . , Sk ⊆ VG, each of size at most l, such that

1. VG ⊆ I(S1) ∪ . . . ∪ I(Sk);

2. VTSi
∩ VTSj

6= ∅ if and only if xixj ∈ EH for 1 ≤ i < j ≤ k;

3. G has pairwise vertex-disjoint trees T1, . . . , Tk with Si ⊆ VTi ⊆ I(Si) for 1 ≤ i ≤ k.

Proof. First suppose that H is a contraction of G. Consider a corresponding H-witness
structure W of G. For i = 1, . . . , k, let Ti be the subgraph of TG induced by the maximal
cliques of G that contain one or more vertices of W (xi). Because each W (xi) induces a
connected subgraph of G, each Ti is connected. This means that Ti is a subtree of TG,
i.e., Ti = TW (xi). We construct Si as follows. For each leaf K of Ti, we choose a vertex of
W (xi) ∩ K and include it in the set Si. Because TG has l leaves, each Ti has at most l
leaves. Hence, |Si| ≤ l for i = 1, . . . , k. We now check conditions 1–3 of the lemma.

1. By construction, we have Ti = TSi . All vertices of W (xi) are inner vertices for Ti, so
W (xi) ⊆ I(Ti) = I(TSi) = I(Si). Hence, VG =

⋃k
i=1W (xi) ⊆

⋃k
i=1 I(Si).

2. Any two vertices u, v ∈ VG are adjacent if and only if there is a maximal clique K in
G containing u and v. Hence, two witness sets W (xi) and W (xj) are adjacent if and only
if there is a maximal clique K in G such that K ∩W (xi) 6= ∅ and K ∩W (xj) 6= ∅. This
means that W (xi) and W (xj) are adjacent if and only if VTi ∩VTj 6= ∅. It remains to recall
that Ti = TSi and Tj = TSj , and that two witness sets W (xi) and W (xj) are adjacent if
and only if xixj ∈ EH .

3. Every G[W (xi)] is a connected graph. Hence, every G[W (xi)] contains a spanning
tree Ti. Because the sets W (x1), . . . ,W (xk) are pairwise disjoint, the trees T1, . . ., Tk are
pairwise vertex-disjoint. Moreover, as we already deduced, Si ⊆ VTi = W (xi) ⊆ I(Si) for
i = 1, . . . , k.

Now suppose that there are pairwise disjoint nonempty sets of vertices S1, . . . , Sk ⊆ VG,
each of size at most l, that satisfy conditions 1–3 of the lemma. By condition 3, there
exist pairwise vertex-disjoint trees T1, . . . , Tk with Si ⊆ VTi ⊆ I(Si) for i = 1, . . . , k.
By condition 1, we have VG ⊆ I(S1) ∪ . . . ∪ I(Sk). This means that there is a partition
X1, . . . , Xk of VG \

⋃k
i=1 VTi , where some of the sets Xi can be empty, such that Xi ⊆

I(Si) for i = 1, . . . , k. Let W (xi) = VTi ∪ Xi for i = 1, . . . , k. We claim that the sets
W (x1), . . . ,W (xk) form an H-witness structure of G. By definition, W (x1), . . . ,W (xk)
are pairwise disjoint, nonempty, and W (x1)∪ . . .∪W (xk) = VG, i.e., they form a partition
of VG. It remains to show that these sets satisfy conditions (i) and (ii) of the definition of
an H-witness structure.

(i) By definition, each tree Ti is connected. By Lemma 3, each node K of TSi contains
a vertex of Ti. By definition, Xi ⊆ I(Si), which implies that for each v ∈ Xi, there is a
node K in TSi such that v ∈ K. Because K is a clique in G, we then find that v is adjacent
to at least one vertex of Ti. Therefore, each W (xi) induces a connected subgraph of G.
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(ii) For the forward direction, suppose that W (xi) and W (xj) are two adjacent witness
sets. Then there exist two vertices u ∈ W (xi) and v ∈ W (xj) such that uv ∈ EG. Let K
be a maximal clique that contains both u and v. Because u ∈ W (xi) and v ∈ W (xj), we
find that K is a node of TSi and of TSj , respectively. Hence, VTSi

∩ VTSj
6= ∅, which means

that xixj ∈ EH by condition 2.
For the reverse direction, let xi and xj be two adjacent vertices in H. By condition 2,

we find that VTSi
∩ VTSj

6= ∅. Hence, there is a node K ∈ VTSi
∩ VTSj

. By Lemma 3, we

deduce that K contains a vertex u ∈ VTi and a vertex v ∈ VTj . Because K is a clique in G,
this means that u and v are adjacent. Because VTi ⊆ W (xi) and VTj ⊆ W (xj), we obtain
u ∈W (xi) and v ∈W (xj), respectively. Hence, W (xi) and W (xj) are adjacent. ut

5.2 The Algorithm

We are now ready to describe our algorithm for Contractibility on chordal graphs.

Theorem 3. Contractibility can be solved in nO(|VH |2) time on chordal graphs.

Proof. Let G be a chordal graph on n vertices, and let H be a graph on k vertices with
VH = {x1, . . . , xk}. If k > n or the number of connected components of G and H are
different, then return No. Suppose that G and H have r > 1 connected components
G1, . . . , Gr and H1, . . . ,Hr, respectively. For each permutation 〈i1, . . . , ir〉 of the ordered
set 〈1, . . . , r〉, check whether Hij is a contraction of Gj for every j ∈ {1, . . . , r}. Return
Yes if this is the case for some permutation, and No otherwise. Hence, we may assume
that G and H are connected.

Construct a clique tree TG of G. If TG has at least k + 1 leaves, then consider each
set A ⊆ VG with |A| = k, and continue with G(A) instead of G. This is allowed due to
Lemma 2. Note that a clique tree of G(A) has at most |A| = k leaves due to Lemma 1.
Hence, we may assume that TG has at most k leaves.

Consider each collection of pairwise disjoint sets S1, . . . , Sk, where each Si is a subset of
VG with 1 ≤ |Si| ≤ k. For each collection S1, . . . , Sk, construct the subtrees TS1 , . . . , TSk

of
TG and the sets I(S1), . . . , I(Sk), and test whether conditions 1–3 of Lemma 4 are satisfied.
If so, the algorithm returns Yes; otherwise, it returns No. Correctness of this algorithm is
an immediate consequence of Lemma 4.

We now analyze the running time. The number of permutations of the ordered set
〈1, . . . , r〉 is at most r! ≤ k!. Constructing TG takes linear time. The number of k-element
subsets A of VG is nO(k). The number of collections of sets S1, . . . , Sk with |Si| ≤ k for
i = 1, . . . , k is nO(k2). Constructing subtrees TS1 , . . . , TSk

of TG and sets I(S1), . . . , I(Sk),
and testing if conditions 1–2 of Lemma 4 are satisfied, takes nO(1) time. As a result of
Corollary 1, testing whether condition 3 of Lemma 4 is satisfied takes nO(k2) time. Hence,
the total running time is nO(k2). Consequently, we can test in this running time whether
a given chordal graph G contains a given graph H as a contraction. When the graph H,
and hence k, is fixed, the running time is polynomial in n. ut

The algorithm for Contractibility can be modified for Induced Minor, but it is
easier to use the following observation. Let P1 on G denote the graph obtained from a
graph G by adding a new vertex and making it adjacent to every vertex of G.
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Lemma 5 ([22]). Let G and H be two arbitrary graphs. Then G contains H as an induced
minor if and only if (P1 on G) contains (P1 on H) as a contraction.

Since P1 on G is chordal whenever G is chordal, we can combine Lemma 5 with The-
orem 3 to obtain the following result, with the same running time as in the proof of
Theorem 3.

Corollary 2. Induced Minor can be solved in nO(|VH |2) time on chordal graphs.

6 Induced Disjoint Paths and Induced Topological Minors

We start this section by showing that the Induced Disjoint Paths problem is
polynomial-time solvable on chordal graphs. Recall that Disjoint Paths is NP-complete
even on interval graphs [30], and that Induced Disjoint Paths is NP-complete on gen-
eral graphs already when k = 2.

Let G be a graph that, together with terminal pairs (s1, t1), . . . , (sk, tk), constitutes
an instance of Induced Disjoint Paths. We say that a set of paths P1, . . . , Pk forms
a solution of this instance if P1, . . . , Pk are mutually induced and Pi is an (si, ti)-path
for i = 1, . . . , k. Recall that it is sufficient to consider solutions where each path Pi is
an induced path in G. Moreover, two different paths Pi and Pj can only intersect in

terminals, and every edge in G[
⋃k

i=1 V (Pi)] belongs to some path Pi or is an edge between
two terminal vertices belonging to different terminal pairs.

Theorem 4. The Induced Disjoint Paths problem can be solved in O(kn3) time on
chordal graphs.

Proof. We apply dynamic programming to solve Induced Disjoint Paths on chordal
graphs. Because our approach is similar to the one we used for Set-Restricted Disjoint
Paths, we mainly explain the differences.

Let G be a chordal graph that together with terminal pairs (s1, t1), . . . , (sk, tk) forms
an instance of Induced Disjoint Paths. If G is disconnected, then we check for each
pair of terminals (si, ti) whether si and ti belong to the same connected component. If
not, then we return No. Otherwise, we consider each connected component and its set of
terminals separately. Hence, we may assume that G is connected.

As before, we construct in linear time a nice tree decomposition (T ,X ) of G with
root Xr, such that each bag is a clique in G. We then apply our dynamic programming
algorithm on (T ,X ). Recall that for a node Xi ∈ VT , we let Ti denote the subtree of T with
root Xi that is induced by Xi and all its descendants, and we write Gi = G[

⋃
j∈VTi

Xj ].

For each node Xi, we construct a table that stores a collection of records

R = ((State1, R1), . . . , (Statek, Rk)),

where R1, . . . , Rk ⊆ Xi are ordered sets without common vertices except (possibly) ter-
minals and 0 ≤ |Rj | ≤ 2 for j ∈ {1, . . . , k}, and where each Statej can have one of the
following four values:
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Not initialized, Started from s, Started from t, or Completed.

These records correspond to the partial solution of Induced Disjoint Paths for Gi

with exactly the same properties as the records stored in the tables for Set-Restricted
Disjoint Paths. In particular, each Rj is the set of vertices of the (sj , tj)-path in Xi.

The tables are constructed and updated in a straightforward way using the following
two observations: (i) every induced path contains at most two vertices of each clique, and
(ii) every clique contains internal vertices of at most one path. The algorithm computes
these tables for all nodes of T , starting from the leaves. Finally, the table for the root
Xr is constructed. The algorithm returns Yes if the table for Xr contains a record R =
((State1, R1), . . . , (Statek, Rk)) with State1 = . . . = Statek = Completed, and it returns
No otherwise.

For the running time, it is sufficient to note that by observations (i) and (ii), there are
at most kn2 possibilities to include in a partial solution internal vertices of the paths that
go through the vertices of Xi. Because T contains O(n) nodes, this means that the total
running time is O(kn3). ut

Corollary 3. Induced Topological Minor can be solved in O(|EH | ·n|VH |+3) time on
chordal graphs.

Proof. Let G be a chordal graph on n vertices and H be a graph whose vertices are
ordered as x1, . . . , x|VH |. Recall that G contains H as an induced topological minor if
and only if G contains an induced subgraph isomorphic to a subdivision of H. In G we
choose |VH | vertices that we order, say as u1, . . . , u|VH |. For each edge xixj ∈ EH we define
a terminal pair (ui, uj). This leads to a set of terminal pairs T = {(s1, t1), . . . , (s`, t`)}
where ` = |EH |. Then G contains an induced subgraph isomorphic to a subdivision of
H such that the isomorphism maps ui to xi for i = 1, . . . , |VH | if and only if G contains
a set of ` mutually induced paths P1, . . . , P`, such that Pj has end-vertices sj and tj for
j = 1, . . . , `. Hence, we may apply Theorem 4 to solve the latter problem in O(`n3) time.
If this does not yield a solution, then we choose another ordered set of u-vertices until we
have considered them all. Because the number of such choices is O(n|VH |) and ` = |EH |,
the result follows. ut

7 Concluding Remarks

In this section, we give another application of the Set-Restricted Disjoint Paths
problem. We show that Set-Restricted Disjoint Connected Subgraphs can be
solved in polynomial time on interval graphs for every fixed k. A graph is an interval
graph if intervals of the real line can be associated with its vertices in such a way that two
vertices are adjacent if and only if their corresponding intervals overlap. Interval graphs
constitute another important subclass of chordal graphs besides split graphs.

Proposition 2. The Set-Restricted Disjoint Connected Subgraphs problem can
be solved in nO(k) time on interval graphs.
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Proof. LetG = (V,E) be an interval graph that together with k pairwise disjoint nonempty
vertex subsets S1, . . . , Sk with corresponding domains U1, . . . , Uk for some k ≥ 1 forms an
instance of Set-Restricted Disjoint Connected Subgraphs.

We construct an interval representation of G; this can be done in linear time as shown
by Booth and Lueker [5]. Given this representation, we say that a vertex u in a subset
V ′ ⊆ V is a leftmost vertex of V ′ if there is no vertex in V ′ whose associated interval
contains a point placed on the real line before the interval of u starts. We define the
notion of a rightmost vertex analogously. For i = 1, . . . , k, let si and ti be a leftmost and
rightmost vertex of Si, respectively. We define U ′i = Ui \

⋃
h6=i Sh for i = 1, . . . , k.

We make the following observation. Let 1 ≤ i ≤ k, and let P be an arbitrary path
from si to ti. Then, by our choice of si and ti, we find that P dominates Si, i.e., every
vertex of Si that is not on P is adjacent to a vertex of P . Moreover, our choice of si
and ti also implies that every connected subgraph that contains Si contains a path from
si to ti that dominates Si. Hence, the terminal pairs (s1, t1), . . . , (sk, tk) with domains
U ′1, . . . , U

′
k, respectively, form an instance of Set-Restricted Disjoint Paths that is

a Yes-instance of this problem if and only if (G,S1, . . . , Sk, U1, . . . , Uk) is a Yes-instance
of Set-Restricted Disjoint Connected Subgraphs. Because we can solve the first
problem by Theorem 2 in nO(k) time, the result follows. ut

We conclude with some open questions. Recall that Contractibility and Induced
Minor are W[1]-hard with parameter |VH | on chordal graphs [19]. Is either of these prob-
lems in FPT on interval graphs? Is Set-Restricted Disjoint Connected Subgraphs
in FPT with parameter |S1| + |S2| + · · · + |Sk| on chordal graphs? Even though an affir-
mative answer to the last question would not improve our results for Contractibility,
Induced Minor and Induced Topological Minor, the question might be interesting
in its own right.
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