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Abstract

The Induced Minor Containment problem takes as input two graphs
G and H, and asks whether G has H as an induced minor. We show that
this problem is fixed parameter tractable in |VH | if G belongs to any non-
trivial minor-closed graph class and H is a planar graph. For a fixed
graph H, the H-Contractibility problem is to decide whether a graph
can be contracted to H. The computational complexity classification of
this problem is still open. So far, H has a dominating vertex in all cases
known to be solvable in polynomial time, whereas H does not have such
a vertex in all cases known to be NP-complete. Here, we present a class
of graphs H with a dominating vertex for which H-Contractibility is
NP-complete. We also present a new class of graphs H for which H-
Contractibility can be solved in polynomial time. Finally, we study
the (H, v)-Contractibility problem, where v is a vertex of H. The in-
put of this problem is a graph G and an integer k, and the question is
whether G is H-contractible such that the “bag” of G corresponding to
v contains at least k vertices. We show that this problem is NP-complete
whenever H is connected and v is not a dominating vertex of H.
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Figure 1: Two P4-witness structures of a graph.

1 Introduction

There are several natural and elementary algorithmic problems that check if
the structure of some fixed graph H shows up as a pattern within the struc-
ture of some input graph G. This paper studies the computational complexity
of two such problems, namely the problems of deciding if a graph G can be
transformed into a graph H by performing a sequence of edge contractions and
vertex deletions, or by performing a sequence of edge contractions only. Theo-
retical motivation for this research can be found in several papers [3, 8, 14, 15]
and comes from hamiltonian graph theory [12] and graph minor theory [17], as
we will explain below. Practical applications include surface simplification in
computer graphics [1, 4] and cluster analysis of large data sets [5, 11, 13]. In the
first practical application, graphic objects are represented using (triangulated)
graphs and these graphs need to be simplified. One of the techniques to do this
is by using edge contractions. In the second application, graphs are coarsened
by means of edge contractions.

Basic Terminology. All graphs in this paper are undirected, finite, and have
neither loops nor multiple edges. For a graph G and a set of vertices S ⊆ VG, we
write G[U ] to denote the subgraph of G induced by U . Two sets S, S′ ⊆ VG are
called adjacent if there exist vertices s ∈ S and s′ ∈ S′ such that ss′ ∈ EG. Let
G and H be two graphs. The edge contraction of edge e = uv in G removes u and
v from G, and replaces them by a new vertex adjacent to precisely those vertices
to which u or v were adjacent. If H can be obtained from G by a sequence of
edge contractions, vertex deletions and edge deletions, then G contains H as a
minor. If H can be obtained from G by a sequence of edge contractions and
vertex deletions, then G contains H as an induced minor. If H can be obtained
from G by a sequence of edge contractions, then G is said to be contractible
to H and G is called H-contractible. This is equivalent to saying that G has a
so-called H-witness structureW, which is a partition of VG into |VH | sets W (h),
called H-witness sets, such that each W (h) induces a connected subgraph of G
and for every two hi, hj ∈ VH , witness sets W (hi) and W (hj) are adjacent in
G if and only if hi and hj are adjacent in H. Here, two subsets A, B of VG

are called adjacent if there is an edge ab ∈ EG with a ∈ A and b ∈ B. By
contracting all the edges in each of the witness sets, we obtain the graph H.
See Figure 1 for an example that shows that in general the witness sets W (h)
are not uniquely defined.
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For any fixed graph H, the problems H-Minor Containment, H-Induced
Minor Containment and H-Contractibility ask if an input graph G has H
as a minor, has H as an induced minor, or is H-contractible, respectively. When
H is part of the input, we denote the three problems by Minor Containment,
Induced Minor Containment and Contractibility.

Known Results. A celebrated result by Robertson and Seymour [17] states
that H-Minor Containment can be solved in cubic time for every fixed graph
H. The complexity classification of the other two problems is still open, al-
though Matoušek and Thomas [16] showed that when H is part of the input
both problems are already NP-complete when H and G are trees of bounded
diameter or trees in which all vertices, except possibly one, have degree at most
five.

Fellows, Kratochv́ıl, Middendorf, and Pfeiffer [8] give both polynomial-time
solvable and NP-complete cases for the H-Induced Minor Containment
problem. They also prove the following.

Theorem 1 ([8]) For every fixed planar graph H, the H-Induced Minor
Containment problem can be solved in polynomial time on planar input graphs.

Brouwer and Veldman [3] initiated the research on the H-Contractibility
problem. Their main result is stated below. A dominating vertex is a vertex
adjacent to all other vertices.

Theorem 2 ([3]) Let H be a connected triangle-free graph. The H-Contract-
ibility problem can be solved in polynomial time if H has a dominating vertex,
and is NP-complete otherwise.

Note that a connected triangle-free graph with a dominating vertex is a star
and that H = P4 (path on four vertices) and H = C4 (cycle on four vertices)
are the smallest graphs H for which H-Contractibility is NP-complete. The
research of Brouwer and Veldman [3] was continued by Levin et al. [14, 15].

Theorem 3 ([14, 15]) Let H be a connected graph on at most five vertices.
The H-Contractibility problem can be solved in polynomial time if H has a
dominating vertex, and is NP-complete otherwise.

The NP-completeness results in Theorems 2 and 3 can be extended using
the notion of degree-two covers. Let dG(x) denote the degree of a vertex x in a
graph G. A graph H ′ with an induced subgraph H is called a degree-two cover of
H if the following two conditions both hold. First, for all x ∈ VH , if dH(x) = 1
then dH′(x) ≥ 2, and if dH(x) = 2 and its two neighbors in H are adjacent then
dH′(x) ≥ 3. Second, for all x′ ∈ VH′ \ VH , either x′ has one neighbor and this
neighbor is in H, or x′ has two neighbors and these two neighbors form an edge
in H.

Theorem 4 ([14]) Let H ′ be a degree-two cover of a connected graph H. If
H-Contractibility is NP-complete, then so is H ′-Contractibility.
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In the papers by Brouwer and Veldman [3] and Levin et al. [14] several other
results are shown. To discuss these we need some extra terminology (which we
will use later in the paper as well). For two graphs G1 = (V1, E1) and G2 =
(V2, E2) with V1∩V2 = ∅, we denote their join by G1 on G2 = (V1∪V2, E1∪E2∪
{uv | u ∈ V1, v ∈ V2}), and their disjoint union by G1∪G2 = (V1∪V2, E1∪E2).
For the disjoint union G ∪G ∪ · · · ∪G of k copies of the graph G, we write kG;
for k = 0 this yields the empty graph (∅, ∅). For integers a1, a2, . . . , ak ≥ 0,
we let H∗i (a1, a2, . . . , ak) be the graph Ki on (a1P1 ∪ a2P2 ∪ · · · ∪ akPk), where
Ki is the complete graph on i vertices and Pi is the path on i vertices. Note
that H∗1 (a1) denotes a star on a1 + 1 vertices. Brouwer and Veldman [3] show
that H-Contractibility can be solved in polynomial time for H = H∗1 (a1)
or H = H∗1 (a1, a2) for any a1, a2 ≥ 0. Observe that H∗i (0) = Ki and that
Ki-Contractibility is equivalent to Ki-Minor Containment, and hence
solvable in polynomial time, by the previously mentioned result of Robertson
and Seymour [17]. These results have been generalized by Levin et al. [14]
leading to the following theorem.

Theorem 5 ([14]) The H-Contractibility problem can be solved in poly-
nomial time for:

1. H = H∗1 (a1, a2, . . . , ak) for any k ≥ 1 and a1, a2, . . . , ak ≥ 0

2. H = H∗2 (a1, a2) for any a1, a2 ≥ 0

3. H = H∗3 (a1) for any a1 ≥ 0

4. H = H∗i (0), for any i ≥ 1.

Our Results and Paper Organization. In Section 2 we first recall some basic
notions in parameterized complexity. Then we consider the Induced Minor
Containment problem, where we assume that G belongs to some fixed minor-
closed graph class G (i.e., G contains every minor of every member) and that H
is planar. We prove that under these assumptions this problem becomes fixed
parameter tractable in |VH |. Since the class of planar graphs is minor-closed,
this result generalizes Theorem 1.

The presence of a dominating vertex seems to play an interesting role in
the complexity classification of the H-Contractibility problem. So far, in
all polynomial-time solvable cases of this problem the pattern graph H has a
dominating vertex, and in all NP-complete cases H does not have such a vertex.
Following this trend, we extend Theorem 5 in Section 3.1 by showing that
H∗4 (a1)-Contractibility can be solved in polynomial time for every a1 ≥ 0.
In Section 3.2 however we present the first class of graphs H with a dominating
vertex for which H-Contractibility is NP-complete. This result implies that
the presence of a dominating vertex in the target graph H does not guarantee
that the H-Contractibility problem can be solved in polynomial time (unless
P = NP). However, it might still be the case that H-Contractibility is NP-
complete whenever H does not have a dominating vertex. This motivates the
study of the following variant of the H-Contractibility problems in Section 4.
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(H, v)-Contractibility
Instance: A graph G and a positive integer k.
Question: Does G have an H-witness structure W with |W (v)| ≥ k?

The main result of Section 4 is a theorem stating that (H, v)-Contractibility
is NP-complete whenever H is connected and v is not a dominating vertex of H.
For example, let P3 = p1p2p3. Then the (P3, p3)-Contractibility problem is
NP-complete (whereas P3-Contractibility can be solved in polynomial time).
Section 5 contains the conclusions and mentions a number of open problems.

2 Induced Minors in Minor-Closed Classes

We start this section with a short introduction on the complexity classes XP
and FPT. Both classes are defined in the framework of parameterized complex-
ity as developed by Downey and Fellows [7]. The complexity class XP consists
of parameterized decision problems Π such that for each instance (I, k) it can
be decided in O(f(k)|I|g(k)) time whether (I, k) ∈ Π, where f and g are com-
putable functions depending only on the parameter k, and |I| denotes the size
of I. So XP consists of parameterized decision problems which can be solved
in polynomial time if the parameter is considered to be a constant. A prob-
lem is fixed parameter tractable in k if an instance (I, k) can be solved in time
O(f(k)|I|c), where f denotes a computable function and c a constant indepen-
dent of k. Therefore, such an algorithm may provide a solution to the problem
efficiently if the parameter is reasonably small. The complexity class FPT ⊆ XP
is the class of all fixed-parameter tractable decision problems.

We show that Induced Minor Containment is fixed parameter tractable
in |VH | on input pairs (G, H) with G from any fixed minor-closed graph class
G and H planar. Before doing this we first recall the following notions. A tree
decomposition of a graph G = (V,E) is a pair (X , T ), where X = {X1, . . . , Xr}
is a collection of bags, which are subsets of V , and T is a tree on vertex set
X with the following three properties. First,

⋃r
i=1 Xi = V . Second, for each

uv ∈ E, there exists a bag Xi such that {u, v} ⊆ Xi. Third, if v ∈ Xi and
v ∈ Xj then all bags in T on the (unique) path between Xi and Xj contain v.
The width of a tree decomposition (X , T ) is max{|Xi|−1 | i = 1, . . . , r}, and the
treewidth tw(G) of G is the minimum width over all possible tree decompositions
of G.

Our proof idea is as follows. We check if the input graph G has sufficiently
large treewidth. If not, then we apply the monadic second-order logic result
of Courcelle [6]. Otherwise, we show that G always contains H as an induced
minor. Before going into details, we first introduce some additional terminology.

The k×k grid Mk has as vertex set all pairs (i, j) for i, j = 0, 1, . . . , k−1, and
two vertices (i, j) and (i′, j′) are joined by an edge if and only if |i−i′|+|j−j′| =
1. For k ≥ 2, let Γk denote the graph obtained from Mk by triangulating its
faces as follows: add an edge between vertices (i, j) and (i′, j′) if i− i′ = 1 and
j′ − j = 1, and add an edge between corner vertex (k − 1, k − 1) and every
external vertex that is not already adjacent to (k − 1, k − 1), i.e., every vertex
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Figure 2: The graphs M6, Γ6, and Π6, respectively.

(i, j) with i ∈ {0, k − 1} or j ∈ {0, k − 1}, apart from the vertices (k − 2, k − 1)
and (k − 1, k − 2). We let Πk denote the graph obtained from Γk by adding a
new vertex s that is adjacent to every vertex of Γk. See Figure 2 for the graphs
M6, Γ6, and Π6.

Let F denote a set of graphs. Then a graph G is called F-minor-free if
G does not contain a graph in F as a minor. If F = {F} we say that G is
F -minor-free. We need the following results by Fomin et al. [9] and by Fellows
et al. [8], respectively.

Theorem 6 ([9]) For every graph F , there is a constant cF such that every
connected F -minor-free graph of treewidth at least cF · k2 is Γk-contractible or
Πk-contractible.

Theorem 7 ([8]) For every planar graph H, there is a constant bH such that
every planar graph of treewidth at least bH contains H as an induced minor.

We also recall the well-known result of Robertson and Seymour [18] proving
Wagner’s conjecture.

Theorem 8 ([18]) A graph class G is minor-closed if and only if there exists
a finite set F of graphs such that G is equal to the class of F-minor-free graphs.

We are now ready to prove our generalization of Theorem 1. A graph class
is nontrivial if it does not contain all graphs.

Theorem 9 Let G be any nontrivial minor-closed graph class. Then the In-
duced Minor Containment problem is fixed parameter tractable in |VH | on
input pairs (G, H) with G ∈ G and H planar.

Proof: Let H be a fixed planar graph with constant bH as defined in Theorem 7.
Let G be a graph on n vertices in a minor-closed graph class G. From Theorem 8
we deduce that there exists a finite set F of graphs such that G is F-minor-
free. Note that F is nonempty, because G is nontrivial. By Theorem 6, for
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each F ∈ F , there exists a constant cF such that every connected F -minor-free
graph of treewidth at least cF · b2

H is ΓbH
-contractible or ΠbH

-contractible. Let
c := min{cF | F ∈ F}. We first check if tw(G) < c · b2

H . We can do so as
recognizing such graphs is fixed parameter tractable in c · b2

H due to a result of
Bodlaender [2].

Case 1. tw(G) < c · b2
H . The property of having H as an induced minor is

expressible in monadic second-order logic (cf. [8]). Hence, by a well-known
result of Courcelle [6], we can determine in O(|VG|) time if G contains H as an
induced minor.

Case 2. tw(G) ≥ c · b2
H . We will show that in this case G is a yes-instance. By

Theorem 6, we find that G is ΓbH
-contractible or ΠbH

-contractible.
First suppose G is ΓbH

-contractible. Then G has ΓbH
as an induced minor.

It is easy to prove that MbH
has treewidth bH . It is clear from the definition of

treewidth that any supergraph of MbH
, and ΓbH

in particular, has treewidth at
least bH . Note that ΓbH

is a planar graph. Then, by Theorem 7, ΓbH
has H as

an induced minor. Consequently, by transitivity, G has H as an induced minor.
Now suppose G is ΠbH

-contractible. Let W be a ΠbH
-witness structure of

G. We remove all vertices in W (s) from G. We then find that G has ΓbH
as an

induced minor and return to the previous situation. �

3 The H-Contractibility Problem

As we mentioned in Section 1, the presence of a dominating vertex seems to play
an interesting role in the complexity classification of the H-Contractibility
problem. So far, in all polynomial-time solvable cases of this problem the pattern
graph H has a dominating vertex, and in all NP-complete cases H does not have
such a vertex. The first result of this section follows this pattern: we prove in
Section 3.1 that H∗4 (a1)-Contractibility can be solved in polynomial time
for every a1 ≥ 0. In Section 3.2 however we present the first class of graphs H
with a dominating vertex for which H-Contractibility is NP-complete.

3.1 Polynomial Cases With Four Dominating Vertices

Let H and G be graphs such that G is H-contractible. Let W be an H-witness
structure of G. We call the subset of vertices in a witness set W (hi) that are
adjacent to vertices in some other witness set W (hj) a connector CW(hi, hj).
We use the notion of connectors to simplify the witness structure of an H∗4 (a1)-
contractible graph. Let y1, . . . , y4 denote the four dominating vertices of H∗4 (a1)
and let x1, . . . , xa1 denote the remaining vertices of H∗4 (a1). For every 1 ≤ i ≤
a1, we define CW(xi, Y ) :=

⋃4
j=1 CW(xi, yj), and also call such a set a connector.

The graph H∗4 (2) is shown in Figure 3, and two copies of an H∗4 (2)-contractible
graph G are shown in Figure 4. The dashed lines in the left and the right
graph indicate two different H∗4 (2)-witness structures W and W ′ of G, re-
spectively. Exactly four vertices of the witness set W (x2) are adjacent to
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y1 y2 y3 y4

x1 x2

Figure 3: The graph H∗4 (2).

W (y1)
W (y2) W (y3)

W (y4)

W (x1) W (x2)

W ′(y1)
W ′(y2) W ′(y3)

W ′(y4)

W ′(x1) W ′(x2)

Figure 4: Two H∗4 (2)-witness structures W and W ′ of a graph, where W ′ is
obtained from W by moving as many vertices as possible from W (x1) ∪W (x2)
to W (y1) ∪ W (y2) ∪ W (y3) ∪ W (y4). The grey vertices form the connectors
CW′(x1, Y ) and CW′(x2, Y ).

W (y1) ∪W (y2) ∪W (y3) ∪W (y4), which means that those four vertices form
the connector CW(x2, Y ). When we consider the H∗4 (2)-witness structureW ′ of
the right graph, we see that none of the connectors CW′(x1, Y ) and CW′(x2, Y ),
formed by the grey vertices, contains more than two vertices.

The next lemma shows that every H∗4 (a1)-contractible graph has an H∗4 (a1)-
witness structure W ′ where every connector of the form CW′(xi, Y ) has size at
most two.

Lemma 1 Let a1 ≥ 0. Every H∗4 (a1)-contractible graph has an H∗4 (a1)-witness
structure W ′ such that for every 1 ≤ i ≤ a1 one of the following two holds:

(i) CW′(xi, Y ) consists of one vertex, and this vertex is adjacent to all four
sets W ′(y1), W ′(y2), W ′(y3), W ′(y4);

(ii) CW′(xi, Y ) consists of two vertices, each of them adjacent to exactly two
sets of W ′(y1), W ′(y2), W ′(y3), W ′(y4).

Proof: Let W be an H∗4 (a1)-witness structure of an H∗4 (a1)-contractible graph
G. Below we transform W into a witness structure W ′ that satisfies the state-
ment of the lemma.
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From each W (xi) we move as many vertices as possible to W (y1)∪· · ·∪W (y4)
in a greedy way and without destroying the witness structure. This way we
obtain an H∗4 (a1)-witness structure W ′ of G. See Figure 4 for an example,
where the H∗4 (2)-witness structure W ′ in the right graph is obtained from the
H∗4 (2)-witness structureW on the left by performing this greedy procedure. We
claim that 1 ≤ |CW′(xi, Y )| ≤ 2 for every 1 ≤ i ≤ a1.

Suppose, for contradiction, that |CW′(xi, Y )| ≥ 3 for some xi. Let u1, u2, u3

be three vertices in CW′(xi, Y ). Let L1, . . . , Lp denote the vertex sets of those
components of G[W ′(xi) \ {u1}] that contain a vertex of CW′(xi, Y ). Note that
p ≥ 1, because of the existence of u2 and u3. Below we prove that p = 1 holds.

Observe that each Lq must be adjacent to at least two “unique” witness
sets from {W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that are not adjacent to
W ′(xi) \Lq, since otherwise we would have moved Lq to W ′(y1)∪ · · · ∪W ′(y4).
Since u1 is adjacent to at least one witness set, this means that p = 1.

The fact that p = 1 implies that u1 must be adjacent to at least two “unique”
witness sets from {W ′(y1), . . . ,W ′(y4)}, i.e., two witness sets that are not ad-
jacent to W ′(xi) \ {u1}; otherwise we would have moved u1 and all components
of G[W ′(xi) \ {u1}] not equal to L1 to W ′(y1) ∪ · · · ∪ W ′(y4). By the same
arguments, exactly the same holds for u2 and u3. This is not possible, as three
vertices cannot be adjacent to two “unique” sets out of four. We conclude that
1 ≤ |CW′(xi, Y )| ≤ 2 for every 1 ≤ i ≤ a1.

Let 1 ≤ i ≤ a1. Suppose |CW′(xi, Y )| = 1, say CW′(xi, Y ) = {p}. Then, by
definition, p is adjacent to each of the four witness sets W ′(y1),W ′(y2), W ′(y3),
W ′(y4). Suppose |CW′(xi, Y )| = 2, say CW′(xi, Y ) = {p, q}. Then p is adjacent
to exactly two of the sets W ′(y1), W ′(y2), W ′(y3), W ′(y4), and q is adjacent to
the other two sets. In all other cases we would have moved p or q (and possibly
some more vertices to keep all witness sets connected) to W ′(y1)∪ · · · ∪W ′(y4).
This completes the proof of Lemma 1. �

We need one additional result, which can be found in the paper by Levin
et al. [14], but follows directly from the polynomial-time result on minors by
Robertson and Seymour [17].

Lemma 2 ([14]) Let G be a graph and let Z1, . . . , Zp ⊆ VG be p specified non-
empty pairwise disjoint sets such that

∑p
i=1 |Zi| ≤ k for some fixed integer

k. The problem of deciding whether G is Kp-contractible with Kp-witness sets
U1, . . . Up such that Zi ⊆ Ui for i = 1, . . . , p can be solved in polynomial time.

Recall that the problems H∗4 (0)-Contractibility and H∗5 (0)-Contract-
ibility can be solved in polynomial time by Theorem 5. Since H∗5 (0) = H∗4 (1),
this means that H∗4 (a1)-Contractibility can be solved in polynomial time
for 0 ≤ a1 ≤ 1. Using Lemma 1 and Lemma 2 we can generalize this as follows.

Theorem 10 The H∗4 (a1)-Contractibility problem is solvable in polynomial
time for any fixed non-negative integer a1.
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Proof: To test whether a connected graph G is H∗4 (a1)-contractible, we act as
follows, due to Lemma 1. We guess a set S = {CW′(xi, Y ) | 1 ≤ i ≤ a1} of
connectors of size at most two. For each connector CW′(xi, Y ) we act as follows.

If CW′(xi, Y ) has size one, i.e., if CW′(xi, Y ) = {p}, then we guess four
neighbors z1, z2, z3, z4 of p that are not contained in any connector of S, and
we put those vertices in sets Z1, Z2, Z3, Z4, respectively. If a connector has size
two, i.e., if CW′(xi, Y ) = {p, q}, then we guess two neighbors z1, z2 of p and
two neighbors z3, z4 of q, such that all the vertices z1, z2, z3, z4 are different and
none of them belongs to any of the connectors in S; we add vertex zi to set Zi

for i = 1, . . . , 4. We then remove the vertices of every connector in S from G
and call the resulting graph G′.

We now check the following. First, we determine in polynomial time whether
the set Z1∪Z2∪Z3∪Z4 is contained in one component D of G′. If so, we check
whether D is K4-contractible with K4-witness sets U1, . . . , U4 such that Zi ⊆ Ui

for i = 1, . . . , 4. This can be done in polynomial time due to Lemma 2. If not,
then we guess different sets of neighbors for the same set of connectors S and
repeat this step. Otherwise, we check whether the remaining components of
G′ together with the connectors CW′(xi, Y ) ∈ S form witness sets W ′(xi) for
i = 1, . . . , a1. This can be done in polynomial time; there is only one unique
way to do this, because witness sets W ′(xi) are not adjacent to each other. If all
possible sets of neighbors of the connectors in S do not yield a positive answer,
then we guess another set S of connectors and start all over. As an example,
see the right graph in Figure 4: if we guess the three grey vertices as set S, and
all of their neighbors in W ′(y1) ∪ . . . ∪W ′(y4) as the sets Z1, . . . , Z4, then the
algorithm described here would correctly decide that G is H∗4 (2)-contractible.

Due to Lemma 1 the above algorithm is correct. Since we only have to guess
O(n2a1) sets S with O(n4a1) different sets of neighbors per set S, and a1 is
fixed, it runs in polynomial time. �

3.2 NP-Complete Cases With a Dominating Vertex

We show the existence of a class of graphs H with a dominating vertex such
that H-Contractibility is NP-complete. To do this we need the following.

Proposition 11 Let H be a graph. If H-Induced Minor Containment
is NP-complete, then so are (K1 on H)-Contractibility and (K1 on H)-
Induced Minor Containment.

Proof: Let H and G be two graphs. We claim that the following three state-
ments are equivalent.

(i) G has H as an induced minor;

(ii) K1 on G is (K1 on H)-contractible;

(iii) K1 on G has K1 on H as an induced minor.
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Figure 5: The graph H̄.

Below, we use G∗ to denote the graph obtained from G by adding a new
vertex x, and making x adjacent to every vertex of G. Similarly, H∗ is the
graph obtained from H by adding a new vertex y, and making y adjacent to
every vertex of H. Note that G∗ and H∗ are isomorphic to the graphs K1 on G
and K1 on H, respectively.

“(i) ⇒ (ii)” Suppose G has H as an induced minor. Then, by definition, G
contains an induced subgraph G′ that is H-contractible. We extend an H-
witness structure W of G′ to an H∗-witness structure of G∗ by putting x and
all vertices in VG \ VG′ in W (y). This shows that G∗ is H∗-contractible, or
equivalently that K1 on G is (K1 on H)-contractible.

“(ii)⇒ (iii)” Suppose K1 on G is (K1 on H)-contractible. By definition, K1 on G
contains K1 on H as an induced minor.

“(iii) ⇒ (i)” Suppose G∗ has H∗ as an induced minor. Then G∗ contains an
induced subgraph G′ that is H∗-contractible. LetW be an H∗-witness structure
of G′. Note that if x ∈ VG′ , then we may assume without loss of generality that
x ∈W (y). We delete W (y) and obtain an H-witness structure of the remaining
subgraph of G′. This subgraph is an induced subgraph of G. Hence, G contains
H as an induced minor. �

Fellows et al. [8] showed that there exists a graph H̄ on 68 vertices such that
H̄-Induced Minor Containment is NP-complete; this graph is depicted in
Figure 5. Combining their result with Proposition 11 (applied repeatedly) leads
to the following corollary.

Corollary 12 For any i ≥ 1, (Ki on H̄)-Contractibility is NP-complete.
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4 The (H, v)-Contractibility Problem

We start with an observation. A star is a complete bipartite graph in which one
of the partition classes has size one. The unique vertex in this class is called the
center of the star. We denote the star on p + 1 vertices with center c and leaves
b1, . . . , bp by Kp,1.

Observation 1 The (Kp,1, c)-Contractibility problem can be solved in poly-
nomial time for every p ≥ 1.

Proof: Let graph G = (V,E) and integer k form an instance of the (Kp,1, c)-
Contractibility problem. We may without loss of generality assume that
|V | ≥ k + p, since otherwise the answer is clearly negative. If G is Kp,1-
contractible, then there exists a Kp,1-witness structureW of G such that |W (bi)| =
1 for all 1 ≤ i ≤ k. This can be seen as follows. As long as |W (bi)| ≥ 2 we
can move vertices from W (bi) to W (c) without destroying the witness struc-
ture. Our algorithm would just guess the witness sets W (bi) and check whether
V \ (W (b1) ∪ · · ·W (bp)) induces a connected subgraph. As the total number
of guesses is bounded by a polynomial in p, this algorithm runs in polynomial
time. �

The (H, v)-Contractibility problem takes as input a graph G and a pa-
rameter k. If k = 1, then the (H, v)-Contractibility problem is equivalent
to the H-Contractibility problem, which leads to the following observation.

Observation 2 Let H be a graph. If H-Contractibility is NP-complete,
then (H, v)-Contractibility is NP-complete for every vertex v ∈ VH .

We expect that there are relatively few pairs (H, v) for which (H, v)-Con-
tractibility can be solved in polynomial time (under the assumption P 6= NP).
This is due to the Observation 2 and the following theorem, which is the main
result of this section.

Theorem 13 Let H be a connected graph and let v be a vertex of H. The
(H, v)-Contractibility problem is NP-complete if v does not dominate H.

Proof: Let H be a connected graph, and let v be a vertex of H that does
not dominate H. Let NH(v) denote the neighborhood of v in H. We partition
VH \ {v} into the following three sets

• V3 := VH \ (NH(v) ∪ {v}),

• V2 := {w ∈ NH(v) | w is not adjacent to V3},

• V1 := {w ∈ NH(v) | w is adjacent to V3}.

Note that neither V1 nor V3 is empty because H is connected and v does not
dominate H; V2 might be empty. In the top graph in Figure 7 a partition
V1, V2, V3 of the set VH \ {v} is depicted using dashed lines.

12
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Figure 6: A subgraph Gw, where cw
1 = (xw

1 ∨ xw
2 ∨ xw

3 ).

Clearly, (H, v)-Contractibility is in NP, because we can verify in poly-
nomial time whether a given partition of the vertex set of a graph G forms
an H-witness structure of G with |W (v)| ≥ k. In order to show that (H, v)-
Contractibility is NP-complete, we use a reduction from 3-SAT, which is
well-known to be NP-complete (cf. [10]). Let X = {x1, . . . , xn} be a set of vari-
ables and C = {c1, . . . , cm} be a set of clauses making up an instance of 3-SAT.
Let X := {x | x ∈ X}. We introduce two additional variables s and t, as well
as 2n additional clauses si := (xi ∨xi ∨ s) and ti := (xi ∨xi ∨ t) for i = 1, . . . , n.
Let S := {s1, . . . , sn} and T := {t1, . . . , tn}. Note that any truth assignment
satisfies each of the 2n clauses in S ∪ T . For every vertex w ∈ V1 we create a
copy Xw of the set X, and we write Xw := {xw

1 , . . . , xw
n }. The literals sw, tw

and the sets X
w

, Cw, Sw and Tw are defined similarly for every w ∈ V1.
We construct a graph G such that C is satisfiable if and only if G has an

H-witness structure W with |W (v)| ≥ k. In order to do this, we first construct
a subgraph Gw of G for every w ∈ V1 in the following way:

• every literal in Xw ∪X
w ∪ {sw, tw} and every clause in Cw ∪ Sw ∪ Tw is

represented by a vertex in Gw

• we add an edge between x ∈ Xw ∪X
w ∪ {sw, tw} and c ∈ Cw ∪ Sw ∪ Tw

if and only if x appears in c;

• for every i = 1, . . . , n − 1, we add edges xw
i xw

i+1, xw
i xw

i+1, xw
i xw

i+1, and
xw

i xw
i+1

• we add edges swxw
1 , swxw

1 , twxw
n , and twxw

n

• for every c ∈ Cw∪Sw∪Tw, we add L vertices whose only neighbor is c; we
determine the value of L later and refer to the L vertices as the pendant
vertices.

13
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Figure 7: A graph H, where v∗ is the grey vertex, and the corresponding graph
G.

See Figure 6 for a depiction of subgraph Gw. For clarity, most of the edges
between the clause vertices and the literal vertices have not been drawn. We
connect these |V1| subgraphs to each other as follows. For every w, x ∈ V1, we
add an edge between sw and sx in G if and only if w is adjacent to x in H.
Let v∗ be some fixed vertex in V1. We add an edge between sv∗

1 and sw
1 for

every w ∈ V1 \ {v∗}. No other edges are added between vertices of two different
subgraphs Gw and Gx. We add a copy of H[V2 ∪ V3] to G as follows. Vertex
x ∈ V2 is adjacent to sw in G if and only if x is adjacent to w in H. Vertex
x ∈ V3 is adjacent to both sw and tw in G if and only if x is adjacent to w in H.
Finally, we connect every vertex x ∈ V2 to sv∗

1 . See Figure 7 for an example of a
graph H and the graph G obtained from H by the procedure described above.

We define L := (2 + 2n)|V1|+ |V2|+ |V3| and k := (L + 1)(m + 2n)|V1|. We
prove that G has an H-witness structure W with |W (v)| ≥ k if and only if C is
satisfiable.

Suppose ϕ : X → {T, F} is a satisfying truth assignment for C. Let XT

(respectively XF ) be the variables that are set to true (respectively false) by ϕ.
For every w ∈ V1, we define Xw

T := {xw
i | xi ∈ XT } and X

w

T := {x | x ∈ Xw
T };

the sets Xw
F and X

w

F are defined similarly. We define the H-witness sets of G
as follows. Let W (w) := {w} for every w ∈ V2 ∪V3, and let W (w) := {sw, tw}∪
Xw

F ∪ X
w

T for every w ∈ V1. Finally, let W (v) := VG \ (
⋃

w∈V1∪V2∪V3
W (w)).
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Note that for every w ∈ V1 and for every i = 1, . . . , n, exactly one of xw
i , xw

i

belongs to Xw
F ∪X

w

T . Hence, G[W (w)] is connected for every w ∈ V1. Since ϕ is
a satisfying truth assignment for C, every cw

i is adjacent to at least one vertex
of Xw

T ∪ X
w

F for every w ∈ V1; by definition, this also holds for every sw
i and

twi . This, together with the edges between sv∗
1 and sw

1 for every w ∈ V1 \ {v∗},
assures that G[W (v)] is connected. So the witness set G[W (w)] is connected
for every w ∈ VH . By construction, two witness sets W (w) and W (x) are
adjacent if and only if w and x are adjacent in H. Hence W := {W (w) | w ∈
VH} is an H-witness structure of G. Witness set W (v) contains n|V1| literal
vertices, (m + 2n)|V1| clause vertices and L pendant vertices per clause vertex,
i.e., |W (v)| = (L + 1)(m + 2n)|V1|+ n|V1| ≥ k.

In order to prove the reverse implication, suppose G has an H-witness struc-
tureW with |W (v)| ≥ k. We first show that all of the (m+2n)|V1| clause vertices
must belong to W (v). Note that for every w ∈ V1, the subgraph Gw contains
2 + 2n + (L + 1)(m + 2n) vertices: the vertices sw and tw, the 2n literal vertices
in Xw ∪ X

w
, the m + 2n clause vertices and the L(m + 2n) pendant vertices.

Hence we have

|VG| = (2 + 2n + (L + 1)(m + 2n))|V1|+ |V2|+ |V3|.

Suppose there exists a clause vertex c that does not belong to W (v). Then
the L pendant vertices adjacent to c cannot belong to W (v) either, as W (v)
is connected and the pendant vertices are only adjacent to c. This means that
W (v) can contain at most |VG| − (L + 1) = (L + 1)(m + 2n)|V1| − 1 vertices,
contradicting the assumption that W (v) contains at least k = (L+1)(m+2n)|V1|
vertices. So all of the (m + 2n)|V1| clause vertices, as well as all the pendant
vertices, must belong to W (v).

We define Wi :=
⋃

w∈Vi
W (w) for i = 1, 2, 3 and prove four claims.

Claim 1: V3 = W3.
The only vertices of G that are not adjacent to any of the clause vertices or

pendant vertices in W (v) are the vertices of V3. As W3 contains at least |V3|
vertices, this proves Claim 1.

Claim 2: For any w ∈ V1, both sw and tw belong to W1.
Let w be a vertex in V1, and let w′ ∈ V3 be a neighbor of w in H. Recall

that both sw and tw are adjacent to w′ in G. Suppose that sw or tw belongs to
W (v) ∪W2. By Claim 1, w′ ∈ W3. Then W (v) ∪W2 and W3 are adjacent. By
construction, this is not possible. Suppose that sw or tw belongs to W3. Then
W3 and W (v) are adjacent, as sw and tw are adjacent to at least one clause
vertex, which belongs to W (v). This is not possible.

Claim 3: For any w ∈ V1, at least one of each pair xw
i , xw

i of literal vertices
belongs to W (v).

Let w ∈ V1. Suppose there exists a pair of literal vertices xw
i , xw

i both of
which do not belong to W (v). Apart from its L pendant vertices, the vertex twi
is only adjacent to xw

i , xw
i and tw. The latter vertex belongs to W1 due to Claim

2. Hence twi and its L pendant vertices induce a component of G[W (v)]. Since
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G[W (v)] contains other vertices as well, this contradicts the fact that G[W (v)]
is connected.

Claim 4: There exists a w ∈ V1 for which at least one of each pair xw
i , xw

i of
literal vertices belongs to W1.

Let S′ := {sw | w ∈ V1} and T ′ := {tw | w ∈ V1}. By Claim 2, S′∪T ′ ⊆W1.
Suppose, for contradiction, that for every w ∈ V1 there exists a pair xw

i , xw
i of

literal vertices, both of which do not belong to W1. Then for any x ∈ V1, the
witness set containing tx does not contain any other vertex of S′ ∪ T ′, as there
is no path in G[W1] from tx to any other vertex of S′ ∪ T ′. But that means W1

contains at least |V1| + 1 witness sets, namely |V1| witness sets containing one
vertex from T ′, and at least one more witness set containing vertices of S′. This
contradiction to the fact that W1, by definition, contains exactly |V1| witness
sets finishes the proof of Claim 4.

Let w ∈ V1 be a vertex for which of each pair xw
i , xw

i of literal vertices exactly
one vertex belongs to W1 and the other vertex belongs to W (v); such a vertex
w exists as a result of Claim 3 and Claim 4. Let ϕ be the truth assignment
that sets all the literals of Xw ∪X

w
that belong to W (v) to true and all other

literals to false. Note that the vertices in Cw form an independent set in W (v).
Since G[W (v)] is connected, each vertex cw

i ∈ Cw is adjacent to at least one of
the literal vertices set to true by ϕ. Hence ϕ satisfies C. �

5 Open Problems

The most challenging task is to finish the computational complexity classifi-
cation of both the H-Induced Minor Containment problem and the H-
Contractibility problem. With regards to the second problem, all previous
evidence suggested some working conjecture stating that this problem can be
solved in polynomial time if H contains a dominating vertex and NP-complete
otherwise. However, in this paper we presented a class of graphs H with a
dominating vertex for which H-Contractibility is NP-complete. This sheds
new light on the H-Contractibility problem and raises a whole range of new
questions.

1. What is the smallest graph H that contains a dominating vertex for which
H-Contractibility is NP-complete?

The smallest graph known so far is the graph K1 on H̄, where H̄ is the graph on
68 vertices depicted in Figure 5. By Observation 2, we deduce that (K1 on H̄, v)-
Contractibility is NP-complete for all v ∈ VK1onH̄ . This leads to the following
question, which might be easier to answer than Question 1.

2. What is the smallest graph H that contains a dominating vertex v for which
(H, v)-Contractibility is NP-complete?

We showed that (H, v)-Contractibility is NP-complete if H is connected and
v does not dominate H. We still expect a similar result for H-Contractibility.
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3. Is the H-Contractibility problem NP-complete if H does not have a
dominating vertex?

Lemma 1 plays a crucial role in the proof of Theorem 10 that shows that H∗4 (a1)-
Contractibility is polynomially solvable for every fixed a1. The lemma states
that we can bound the size of connectors of the form CW′(xi, Y ) by a fixed con-
stant, which guarantees that we only need to guess a polynomial number of
sets in the proof of Theorem 10. Lemma 1 cannot be generalized such that it
holds for the H∗i (a1)-Contractibility problem for i ≥ 5 and a1 ≥ 2. For
example, there exist H∗5 (2)-contractible graphs for which the size of the connec-
tors CW′(xi, Y ) cannot be bounded by a constant. Hence, new techniques are
required to attack the H∗i (a1)-Contractibility problem for i ≥ 5 and a1 ≥ 2.
As a result of Theorem 5, the H∗5 (a1)-Contractibility problem can be solved
in polynomial time for 0 ≤ a1 ≤ 1. It would be interesting to see whether we
can find an analogue of Theorem 10 in case the target graph is H∗5 (a1).

4. Is H∗5 (a1)-Contractibility solvable in polynomial time for every a1 ≥ 0?

We expect that the (H, v)-Contractibility problem can be solved in poly-
nomial time for only a few target pairs (H, v). One such class of pairs might
be (Kp, v), where v is an arbitrary vertex of Kp. Using similar techniques as
before (i.e., simplifying the witness structure), one can easily show that (Kp, v)-
Contractibility can be solved in polynomial time for p ≤ 3.

5. Is (Kp, v)-Contractibility solvable in polynomial time for every p ≥ 4?

We finish this section with some remarks on fixing the parameter k in an
instance (G, k) of the (H, v)-Contractibility problem.

Proposition 14 The (P3, p3)-Contractibility problem is in XP.

Proof: We first observe that any graph G that is a yes-instance of this problem
has a P3-witness structure W with |W (p1)| = 1. This is so, as we can move all
but one vertex from W (p1) to W (p2) without destroying the witness structure
(see also Figure 1). Moreover, such a graph G contains a set W ∗ ⊆W (p3) such
that |W ∗| = k and G[W ∗] is connected. Hence we act as follows.

Let G be a graph. We guess a vertex v and a set V ∗ of size k. We put all
neighbors of v in a set W2. We check if G[V ∗] is connected. If so, we check for
each y ∈ VG \(V ∗∪N(v)∪{v}) whether it is separated from N(v) by V ∗ or not.
If so, we put y in V ∗. If not, we put y in W2. In the end we check if G[W2] and
G[V ∗] are connected. If so, G is a yes-instance of (P3, p3)-Contractibility,
as W (p1) = {v}, W (p2) = W2 and W (p3) = V ∗ form a P3-witness structure of
G with |W (p3)| ≥ k. If not, we guess another pair (v, V ∗) and repeat the steps
above. Since these steps can be performed in polynomial time and the total
number of guesses is bounded by a polynomial in k, the result follows. �

An affirmative answer to the next question would strengthen Proposition 14.

6. Is the (P3, p3)-Contractibility problem in FPT?
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