
Contracting Graphs to Paths and Trees?

Pinar Heggernes1, Pim van ’t Hof1, Benjamin Lévêque2, Daniel Lokshtanov3,
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Abstract. Vertex deletion and edge deletion problems play a central
role in parameterized complexity. Examples include classical problems
like Feedback Vertex Set, Odd Cycle Transversal, and Chordal
Deletion. The study of analogous edge contraction problems has so far
been left largely unexplored from a parameterized perspective. We con-
sider two basic problems of this type: Tree Contraction and Path
Contraction. These two problems take as input an undirected graph
G on n vertices and an integer k, and the task is to determine whether
we can obtain a tree or a path, respectively, by a sequence of at most k
edge contractions in G. For Tree Contraction, we present a random-
ized 4k nO(1) time polynomial-space algorithm, as well as a determinis-
tic 4.98k nO(1) time algorithm, based on a variant of the color coding
technique of Alon, Yuster and Zwick. We also present a deterministic
2k+o(k) + nO(1) time algorithm for Path Contraction. Furthermore,
we show that Path Contraction has a kernel with at most 5k + 3
vertices, while Tree Contraction does not have a polynomial kernel
unless NP ⊆ coNP/poly. We find the latter result surprising because of
the connection between Tree Contraction and Feedback Vertex
Set, which is known to have a kernel with 4k2 vertices.

1 Introduction

For a graph class Π, the Π-Contraction problem takes as input a graph G
on n vertices and an integer k, and the question is whether there is a graph
H ∈ Π such that G can be contracted to H by using at most k edge contrac-
tions. In early papers by Watanabe et al. [41, 42] and Asano and Hirata [3],
Π-Contraction was proved to be NP-complete for several classes Π. The Π-
Contraction problem fits into a wider and well studied family of graph modi-
fication problems, where vertex deletions and edge deletions are two other ways
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of modifying a graph. Π-Vertex Deletion and Π-Edge Deletion are the
problems of deciding whether some graph belonging to graph class Π can be
obtained from G by at most k vertex deletions or by at most k edge deletions,
respectively. All of these problems are shown to be NP-complete for most of the
interesting graph classes Π [37, 43–45]. However, whereas Π-Vertex Deletion
and Π-Edge Deletion have been studied in detail for several graph classes
Π with respect to fixed-parameter tractability (e.g., [4, 6, 11, 21, 27, 32, 34, 35, 38,
31]), this has not been the case for Π-Contraction. Note that every edge con-
traction reduces the number of vertices of the input graph by one, which means
that the parameter k of Π-Contraction is never more than n− 1.

A parameterized problem is a subset Q ⊆ Σ∗ × N for some finite alphabet
Σ, where the second part of the input is called the parameter. A parameterized
problem Q ⊆ Σ∗×N is said to be fixed-parameter tractable (or FPT) if for each
pair (x, k) ∈ Σ∗ × N it can be decided in time f(k) |x|O(1) whether (x, k) ∈ Q,
for some function f that only depends on k; here, |x| denotes the length of input
x. We say that a parameterized problem Q has a kernel if there is an algorithm
that transforms each instance (x, k) in time (|x|+k)O(1) into an instance (x′, k′),
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and |x′| + k′ ≤ g(k) for some
function g. Here, g is typically an exponential function of k. If g is a polynomial
or a linear function of k, then we say that the problem has a polynomial kernel
or a linear kernel, respectively. We refer the interested reader to the monographs
by Downey and Fellows [21] and Flum and Grohe [22] for more background on
parameterized complexity.

It is known that a parameterized problem is fixed-parameter tractable if
and only if it is decidable and has a kernel [21, 22], and several fixed-parameter
tractable problems are known to have polynomial or even linear kernels. The
recent establishment of methods for proving non-existence of polynomial kernels,
under some complexity theoretical assumptions [7–9], significantly increased the
interest in the question whether or not a fixed-parameter tractable problem has
a polynomial kernel. During the last decade, considerable effort has also been
devoted to improving the parameter dependence in the running time of classical
parameterized problems. Even in the case of a running time ck nO(1) for some
constant c, lowering the base of the exponential function is considered to be
an important challenge. For instance, the running time of Feedback Vertex
Set has been successively improved from 37.7k nO(1) [26] to 10.57k nO(1) [18],
5k nO(1) [13], 3.83k nO(1) [12], and randomized 3k nO(1) [17].

In this paper, we present results along these established lines for Tree Con-
traction and Path Contraction. Since edge contractions preserve the num-
ber of connected components, we may assume that the input graph is connected.
Hence Tree Contraction is equivalent to the Π-Contraction problem when
Π is the class of acyclic graphs. We find these two problems of particular interest,
since the corresponding vertex deletion problems Feedback Vertex Set and
Longest Induced Path are famous and well studied. These two problems,
when parameterized by the number of deleted vertices, are known to be fixed-
parameter tractable and to have polynomial kernels [19, 21, 40]. NP-completeness
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of Tree Contraction and Path Contraction readily follows from known
results [3, 10]. It is easy to see that if a graph G is contractible to a path or a
tree with at most k edge contractions, then the treewidth of G is at most k+ 1.
Consequently, when parameterized by k, fixed-parameter tractability of Tree
Contraction and Path Contraction follows from the well known result of
Courcelle [15], as both problems are expressible in monadic second order logic.
However, this approach yields very unpractical algorithms whose running times
involve huge functions of k.

We give fast FPT algorithms for both problems, and study them from a
kernelization point of view. For Tree Contraction, we present a polynomial-
space randomized algorithm that runs in time 4k nO(1), as well as a deterministic
4.98k nO(1) time algorithm, based on a variant of the color coding technique of
Alon, Yuster and Zwick [1]. We also show that Tree Contraction does not
have a polynomial kernel, unless NP ⊆ coNP/poly. This is in contrast with the
corresponding vertex deletion problem Feedback Vertex Set, which is known
to have a kernel with 4k2 vertices [40]. We then show that Path Contraction
has a linear vertex kernel, and use this kernel to obtain a deterministic algorithm
for the problem with running time 2k+o(k) + nO(1).2-

Let us finish this section by mentioning some related recent work. When re-
stricted to chordal input graphs, Tree Contraction and Path Contraction
can be solved in time O(n+m) and O(nm), respectively [29]. Very recently, Bi-
partite Contraction was shown to be fixed-parameter tractable [30]. Golo-
vach et al. [25] studied the Degree Contraction problem, which takes as
input a graph G and two integers d and k, and asks whether G can be modified
into a graph of minimum degree at least d by contracting at most k edges in G.
They proved that the problem is NP-complete already when d = 14. They also
showed that the problem is fixed-parameter tractable when parameterized by
k and d, but becomes W[1]-hard when parameterized by k. Finally, settling an
open problem frequently posed in different settings, Martin and Paulusma [33]
showed that Π-Contraction is NP-complete when Π is the class of bicliques
Kp,q with p, q ≥ 2.

2 Definitions and Notation

All graphs in this paper are finite, undirected, and simple, i.e., do not contain
multiple edges or loops. Given a graph G, we denote its vertex set by V (G) and
its edge set by E(G). We also use the ordered pair (V (G), E(G)) to represent G.
Throughout the paper, whenever we consider a problem or an algorithm, we use
n and m to denote the number of vertices and edges, respectively, of the input
graph.

Let G = (V,E) be a graph. The neighborhood of a vertex v in G is the set
NG(v) = {w ∈ V | vw ∈ E} of neighbors of v in G. Let S ⊆ V . We write NG(S)
to denote

⋃
v∈S NG(v) \S. We say that S dominates a set T ⊆ V if every vertex

in T either belongs to S or has at least one neighbor in S, and S is independent
if no vertex in S has a neighbor in S. We write G[S] to denote the subgraph of
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G induced by S. We use shorthand notation G − v to denote G[V \ {v}] for a
vertex v ∈ V , and G − S to denote G[V \ S] for a set of vertices S ⊆ V . Two
disjoint sets S1, S2 ⊆ V (G) are adjacent if there exists an edge s1s2 ∈ E(G) with
s1 ∈ S1 and s2 ∈ S2.

A graph is connected if it has a path between every pair of its vertices, and
is disconnected otherwise. The connected components of a graph are its maximal
connected subgraphs. We say that a vertex subset S ⊆ V is connected if G[S] is
connected. A bridge in a connected graph is an edge whose deletion results in a
disconnected graph. A cut vertex in a connected graph is a vertex whose deletion
results in a disconnected graph. A graph is 2-connected if it has no cut vertex. A
2-connected component of a graph G is a maximal 2-connected subgraph of G.
A connected vertex cover of a graph G is a subset V ′ ⊆ V (G) such that G[V ′] is
connected and every edge of G has at least one endpoint in V ′. We say that V ′

is a minimum connected vertex cover is there is no connected vertex cover V ′′

of G such that |V ′′| < |V ′|.
We use P` to denote the graph isomorphic to a path on ` vertices, i.e.,

the graph with ordered vertex set {p1, p2, p3, . . . , p`} and edge set {p1p2, p2p3,
. . . , p`−1p`}. We will also write p1p2 · · · p` to denote P`. A tree is a connected
acyclic graph. A vertex of a tree with exactly one neighbor is called a leaf, and
an internal vertex is a vertex that is not a leaf. A star is a tree isomorphic to the
graph with vertex set {a, v1, v2, . . . , vs} and edge set {av1, av2, . . . , avs}. Vertex
a is called the center of the star. A graph G = (V,E) is bipartite if there exist two
disjoint sets A,B ⊆ V such that V = A∪B and both A and B are independent
sets; we use (A,B,E) to denote such a bipartite graph.

The contraction of the edge xy in G removes vertices x and y from G, and
replaces them by a new vertex, which is made adjacent to precisely those vertices
that were adjacent to at least one of the vertices x and y. A graphG is contractible
to a graph H (or H-contractible) if H can be obtained from G by a sequence
of edge contractions. Equivalently, G is contractible to H if there is a surjection
ϕ : V (G) → V (H), with W (h) = {v ∈ V (G) | ϕ(v) = h} for every h ∈ V (H),
that satisfies the following two conditions:

(i) W (h) is a (non-empty) connected set in G, for every h ∈ V (H);
(ii) W (hi) and W (hj) are adjacent in G if and only if hihj ∈ E(H), for every

hi, hj ∈ V (H).

We say that W = {W (h) | h ∈ V (H)} is an H-witness structure of G, and
the sets W (h), for h ∈ V (H), are called witness sets of W. Note that W is a
partition of V (G). For any subset E′ ⊆ E(G), we write G/E′ to denote the
graph obtained from G by contracting all the edges in E′. If E′ consists of a
single edge uv, then we write G/uv instead of G/{uv}. Similarly, for any subset
E′ ⊆ E and any edge uv ∈ E′, we sometimes write E′ \ uv instead of E′ \ {uv}.

If a witness set contains more than one vertex of G, then we call it a big
witness set; a witness set consisting of a single vertex of G is called small. We
say that G is k-contractible to H, with k ≤ n− 1, if H can be obtained from G
by at most k edge contractions, i.e., if there exists a set E′ ⊆ E(G) of at most
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k edges such that G/E′ is isomorphic to H. The next observation follows from
the above definitions.

Observation 1 If a graph G is k-contractible to a graph H, then |V (G)| ≤
|V (H)| + k, and any H-witness structure W of G satisfies the following three
properties:

– no witness set of W contains more than k + 1 vertices;
– W has at most k big witness sets;
– all the big witness sets of W together contain at most 2k vertices.

A 2-coloring of a graph G is a function φ : V (G)→ {1, 2}. Here, a 2-coloring
of G is merely an assignment of colors 1 and 2 to the vertices of G, and should
not be confused with a proper 2-coloring of G, which is a 2-coloring with the
additional property that no two adjacent vertices receive the same color. If all
the vertices belonging to a set S ⊆ V (G) have been assigned the same color by
φ, we say that S is monochromatic with respect to φ, and we use φ(S) to denote
the color of the vertices of S. Any 2-coloring φ of G defines a partition of V (G)
into two sets V 1

φ and V 2
φ , which are the sets of vertices of G colored 1 and 2 by

φ, respectively. A set X ⊆ V (G) is a monochromatic component of φ if G[X] is
a connected component of G[V 1

φ ] or a connected component of G[V 2
φ ]. We say

that two different 2-colorings φ1 and φ2 of G coincide on a vertex set A ⊆ V (G)
if φ1(v) = φ2(v) for every vertex v ∈ A.

Finally, we will use the following well-known result in the running time anal-
ysis of some of our algorithms (see for example [2], page 440).

Proposition 1. For every x ≥ 1,(
1− 1

x

)x
≤ 1/e ≤

(
1− 1

x+ 1

)x
.

3 The Tree Contraction Problem

Asano and Hirata [3] showed that Tree Contraction is NP-complete. In this
section, we first show that Tree Contraction does not have a polynomial
kernel, unless NP ⊆ coNP/poly. We then present a randomized algorithm for
Tree Contraction that uses polynomial space and runs in time 4knO(1),
and show how it can be derandomized using families of perfect hash functions,
yielding a deterministic 4.98knO(1) time algorithm.

Recent breakthrough results by Bodlaender et al. [7] and Fortnow and San-
thanam [23] provide a framework for proving that certain parameterized prob-
lems do not have polynomial kernels, unless NP ⊆ coNP/poly. Bodlaender et
al. [9] extended this framework by introducing the following concept. A polyno-
mial time and parameter transformation (or polynomial parameter transforma-
tion for short) from a parameterized problem P to a parameterized problem Q
is a polynomial-time function that transforms each instance (x, k) of P into an
instance (x′, k′) of Q such that (x, k) is a yes-instance if and only if (x′, k′) is a

5



yes-instance, and k′ ≤ p(k) for some polynomial p. For a parameterized problem
Q ⊆ Σ∗×N, the derived classical problem Qc is the set {x1k | (x, k) ∈ Q}, where
1 /∈ Σ.

We use the following theorem, due to Bodlaender et al. [9], to prove our first
result.

Theorem 1 ([9]). Let P and Q be parameterized problems, and let P c and Qc

be the derived classical problems. Suppose that P c is NP-complete and Qc is in
NP. If there is a polynomial parameter transformation from P to Q and Q has
a polynomial kernel, then P also has a polynomial kernel.

Theorem 2. Tree Contraction does not have a polynomial kernel, unless
NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Red-Blue Dom-
ination to Tree Contraction. The Red-Blue Domination problem takes
as input a bipartite graph G = (A,B,E) and an integer t, and the question is
whether there exists a subset of at most t vertices in B that dominates A. We
may assume that every vertex of A has a neighbor in B, and that t ≤ |A|. This
problem, when parameterized by |A|, has been shown not to have a polynomial
kernel, unless NP ⊆ coNP/poly [20]. By a straightforward reduction from the
NP-complete problem Set Cover [24], the derived classical problem of Red-
Blue Domination is NP-complete. Clearly, the derived classical problem of
Tree Contraction is in NP. Hence, the existence of the polynomial parame-
ter transformation described below, together with Theorem 1, implies that Tree
Contraction does not have a kernel with size polynomial in k, unless NP ⊆
coNP/poly.

Given an instance of Red-Blue Domination, i.e., a bipartite graph G =
(A,B,E) and an integer t, we construct an instance (G′, k) of Tree Contrac-
tion with G′ = (A′∪B′, E′) as follows. We set k = |A|+ t. In order to construct
G′ from G, we first add a new vertex a to A and make it adjacent to every
vertex of B. We define A′ = A ∪ {a}. We then add, for every vertex u of A,
k + 1 new vertices to B that are all made adjacent to exactly u and a. The set
B′ consists of the set B and the |A|(k+ 1) newly added vertices. This completes
the construction. We show that there is a subset of at most t vertices in B that
dominates A in G if and only if G′ is k-contractible to a tree.

Assume there exists a set S ⊆ B of size at most t such that S dominates A
in G. Vertex a is adjacent to all vertices of S, so the set X = A ∪ S ∪ {a} is
connected in G′. Note that all the vertices of G′ that do not belong to X form
an independent set in G. We can define a T -witness structure W of G′, where T
is a tree, as follows: let X be the only big witness set of W, and let each vertex
of V (G′) \X form a singleton witness set of W. Contracting all the edges of a
spanning tree of G[X] yields the tree T ; in fact, T is a star. Since X has at most
|A| + t + 1 = k + 1 vertices, any spanning tree of G[X] has at most k edges.
Hence G′ is k-contractible to a tree.

For the reverse direction, assume that G′ is k-contractible to a tree T , and let
W be a T -witness structure of G′. Recall that every vertex of A has a neighbor
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in B. Hence, for each u ∈ A, there are k+ 1 cycles that contain a, u, one vertex
b ∈ B and one vertex from B′ \B, such that these cycles pairwise intersect only
in {a, u, b}. This implies that a and u must appear in the same witness set of
W, since otherwise at least k + 1 edge contractions are needed in order to kill
all the cycles containing both a and u. Consequently, there must be a witness
set W ∈ W that contains all the vertices of A ∪ {a}. Since all the vertices of
G′−W belong to B′, they form an independent set in G′. This means that W is
the only big witness set of W, and T is in fact a star. Since G′ is k-contractible
to T , we know that |W | ≤ k + 1 by Observation 1. Suppose W contains a
vertex x ∈ B′ \ B. By construction, x is adjacent only to a and exactly one
vertex a′ ∈ A. Let b′ be a neighbor of a′ in B. Then we have NG′(x) ⊆ NG′(b′),
so W ′ = (W \ {x}) ∪ {b′} is connected and |W ′| ≤ |W |. Hence, replacing W
in W by W ′ yields a T ′-witness structure for a tree T ′ on at least as many
vertices as T . By repeating this argument, we may assume that W contains
no vertices of B′ \ B. Let S = W \ A′. Since W is a connected set of size at
least 2 and A′ is an independent set, we have that S dominates A′. Moreover,
|S| = |W | − |A| − 1 ≤ k − |A| = t. We conclude that S is a subset of at most t
vertices in B that dominates A in G.

In order to see that the transformation described above is a polynomial pa-
rameter transformation, first observe that k = t+ |A| ≤ 2|A|. Moreover, in order
to obtain G′ from G, we added |A|(k+1)+1 ≤ 2|A|2 + |A|+1 vertices, |B| edges
between a and the vertices of B, and two edges incident to each of the |A|(k+1)
vertices of B′ \B. Hence the size of the graph has increased by O(|B|+ |A|2). ut

As a contrast to this negative result, we will present two fast algorithms
for Tree Contraction. The first one, a randomized algorithm with running
time 4k nO(1), uses as a subroutine a fast randomized algorithm due to Cygan et
al. [17] for finding connected vertex covers. We then derandomize this algorithm
using the concept of universal sets and a fast deterministic algorithm for finding
connected vertex covers due to Binkele-Raible and Fernau [5], resulting in a
deterministic algorithm with a slightly worse running time 4.98k nO(1). The next
lemma implies that we may assume the input graph of Tree Contraction to
be 2-connected.

Lemma 1. A connected graph is k-contractible to a tree if and only if each of
its 2-connected components can be contracted to a tree, using at most k edge
contractions in total.

Proof. Let G1, . . . , Gq be the 2-connected components of G. It is well-known
that the 2-connected components partition the edges of G.

First suppose that for each 2-connected component Gi there is a subset of
edges E′i ⊆ E(Gi) such that Gi/E′i is a tree and

∑q
i=1 |E′i| ≤ k. Let E′ = ∪qi=1E

′
i

and consider the graph G/E′. Clearly |E′| ≤ k, so it remains to prove that G/E′

is a tree. For contradiction, suppose that G/E′ contains a cycle C ′. The edges
in E′ uniquely define a (G/E′)-witness structureW of G, whose witness sets are
exactly the vertex sets of the connected components of the graph (V (G), E′).
Let us consider the witness sets of W in G that correspond to the vertices of C ′
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in G/E′. By definition, the witness set W (c) is a connected set in G for each
c ∈ V (C ′), and for every c1, c2 ∈ V (C ′), the witness sets W (c1) and W (c2) are
adjacent in G if and only if c1 and c2 are adjacent in G/E′. Since C ′ is a cycle
in G/E′, it follows that there is a cycle C in G passing through the witness sets
W (c) for each c ∈ V (C ′). Since |E(C ′)| ≥ 3, C contains at least three edges
e1, e2, e3 of E(C ′) such that the endpoints of ei belong to different witness sets
of W, for 1 ≤ i ≤ 3. By the construction of W, this means that none of the edge
e1, e2, e3 belongs to E′. It is well-known that for any cycle in a graph, all the
vertices and edges of that cycle belong to the same 2-connected component of
the graph. This means that C is contained in a 2-connected component of G,
say Gj . Since {e1, e2, e3} ∩ E′j = ∅, the graph Gj/E

′
j contains a cycle of length

at least 3, contradicting the assumption that Gj/E′j is a tree.
Now suppose that G is k-contractible to a tree, and let E′ ⊆ E(G) be a set

of edges such that |E′| ≤ k and G/E′ is a tree. Let F be a spanning forest of
the graph (V (G), E′). Note that |E(F )| ≤ |E′| ≤ k, and that G/E(F ) is a tree.
For 1 ≤ i ≤ q, let Fi = F [V (Gi)] be the subgraph of F that is contained in the
2-connected component Gi, and let E′i = E(Fi). We claim that Gi/E′i is a tree
for each 1 ≤ i ≤ q. For any two vertices u, v ∈ V (Gi), u and v are contained in
the same tree of Fi if and only if they are contained in the same tree of F , as the
2-connected component Gi contains all the vertices of any path in G between u
and v. Hence, for every tree T ′ in Fi there is a single tree T in F such that T ′ is
a subtree of T . Moreover, for every edge e ∈ E(Gi), Gi contains all the edges of
all the cycles in G that contain e. This implies that Gi/E′i is a tree, since a cycle
in Gi/E

′
i would imply a cycle in G/E(F ), contradicting the fact that G/E(F )

is a tree. We conclude that we can turn each 2-connected component Gi of G
into a tree by contracting the edges in E′i, using

∑q
i=1 |E′i| = |E(F )| ≤ k edge

contractions in total. ut

The main idea for our algorithms for Tree Contraction is to use 2-
colorings of the input graph G to find a T -witness structure for some tree T
that G is k-contractible to (or conclude that such a witness structure does not
exist). In order to make this more concrete, we introduce the following definition.

Definition 1. Let G be a 2-connected graph, let T be a tree, and let W be a
T -witness structure of G. A 2-coloring φ of G is W-compatible if it satisfies the
following two conditions:

(1) every witness set of W is monochromatic with respect to φ;
(2) if W (u) and W (v) are big witness sets of W and uv is an edge of T , then

φ(W (u)) 6= φ(W (v)).

Let G be a 2-connected graph that can be contracted to a tree T , and let
W be a T -witness structure of G. Suppose we are given this graph G and a 2-
coloring φ of G, but neither T nor W is given. In Lemma 2 below, we will show
that if φ is W-compatible, then we can use the monochromatic components of
φ to compute a T ′-witness structure W ′ of G, such that T ′ is some tree with at
least as many vertices as T (possibly T ′ = T and W ′ = W). We prove both a
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deterministic and a randomized version of the lemma, as we need both versions
in the algorithms for Tree Contraction presented later.

So how can we find a T ′-witness structureW ′ as described above when we are
given G and aW-compatible 2-coloring φ of G, but do not knowW? Informally,
we do this by finding a “star-like” partition of each monochromatic component
X of φ, where one set of the partition is a minimum connected vertex cover of
G[X], and all the other sets have size 1. There are several fast parameterized
algorithms for finding a minimum connected vertex cover of a graph. For our
purposes, we will use both the currently fastest deterministic algorithm, due to
Binkele-Raible and Fernau [5], and the fastest randomized algorithm, due to
Cygan et al. [17]. The Connected Vertex Cover problem takes as input a
graph G and an integer t, and asks whether or not G has a connected vertex
cover of size at most t.

Proposition 2 ([5]). There is a deterministic algorithm solving Connected
Vertex Cover in time 2.4882t nO(1), using polynomial space.

Proposition 3 ([17]). There is a Monte Carlo algorithm solving Connected
Vertex Cover in time 2t nO(1), using polynomial space. The algorithm cannot
give false positives and may give false negatives with probability at most 1/2.

We point out that the algorithms in Propositions 2 and 3 can be used not
only to decide whether or not G has a connected vertex cover of size at most t,
but also to construct such a connected vertex cover (with probability at least 1/2
in the case of the Monte Carlo algorithm) if one exists [5, 17]. We will need this
in the proof of the following lemma, which plays a crucial role in our algorithms
for Tree Contraction.

Lemma 2. Let G be a 2-connected graph, and let φ be a 2-coloring of G. If G
has a T -witness structure W for some tree T whose largest witness set has size
d, and φ is W-compatible, then we can compute a T ′-witness structure of G for
some tree T ′ with at least as many vertices as T

(i) in time 2.4882d nO(1), or
(ii) in time 2d nO(1) with probability at least 1/e,

using polynomial space.

Proof. We assume that G has at least 3 vertices; the lemma trivially holds oth-
erwise. Suppose G has a T -witness structure W for some tree T such that the
largest witness set of W has size d, and suppose that φ is W-compatible. Let X
be the set of monochromatic components of φ. We first make a few claims about
X . We refer to Figure 1 for a helpful illustration.

Claim 1. X is a T ′′-witness structure of G for some tree T ′′ that has at most as
many vertices as T .
Proof Every witness set of W is monochromatic with respect to φ by property
(1) in Definition 1, and connected by definition. Hence, for every W ∈ W, there
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exists an X ∈ X such that W ⊆ X. Moreover, since every X ∈ X is connected by
definition, there exists a vertex subset Y ⊆ V (T ) such that T [Y ] is a connected
subtree of T and X =

⋃
y∈Y W (y). Hence, X is a T ′′-witness structure of G for

a tree T ′′ that has at most as many vertices as T . �

X

W1

W2

W3 W4

w5

w6

w7

w8

G T

Fig. 1. Schematic illustration of a graph G (on the left) that is contractible to tree
T (on the right). The sets W1, W2, W3 and W4 are connected, and G itself is 2-
connected; for simplicity, not all vertices and edges have been drawn. Let W be the
T -witness structure of G with four big witness sets W1, . . . ,W4 and four small witness
sets {w5}, . . . , {w8}. Let φ be a W-compatible 2-coloring of G that colors the dark
(blue) shaded big witness sets of W with one color, and the other sets of W with the
other color. The set X of monochromatic components of φ forms a T ′′-witness structure
of G, where T ′′ is a star with three leaves. Consider the monochromatic component X
of ϕ that is indicated in the figure. The four witness sets of W that are contained in
X form a shatter of X, but not necessarily a minimum shatter of X. The four black
vertices form the set X̂.

The idea behind our algorithm is to partition each X ∈ X into as many
smaller witness sets as possible, such that we obtain either W or a T ′-witness
structure of G for some tree T ′ with at least as many vertices as T . In order to
explain how we will replace X ∈ X by smaller sets, we need to introduce some
additional terminology.

For any X ∈ X , let X̂ = NG(V (G) \X) be the set of vertices in X that have
at least one neighbor outside X (the black vertices in Figure 1). A shatter of X
is a partition of X into sets such that one of them is a connected vertex cover
C of G[X] containing every vertex of X̂, and each of the others has size 1. The
size of a shatter is the size of C, and a shatter of X is minimum if there is no
shatter of X that has strictly smaller size, i.e., if C is a minimum-size superset
of X̂ that is a connected vertex cover of G[X]. Note that every set X ∈ X has
a shatter, and that it is possible that {X} is a shatter of X.
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If follows from the proof of Claim 1 that for every X ∈ X there is a non-
empty collection of witness sets W∗ ⊆ W such that X is the union of the sets
in W∗. The next claim shows that such a collection W∗ forms a shatter of X.

Claim 2: Let X ∈ X and let W∗ ⊆ W be such that X is the union of the sets in
W∗. If |X| ≥ 2, then

(i) exactly one of the sets in W∗ is big; and
(ii) this big witness set is a connected vertex cover of G[X] and contains X̂.

Proof Suppose |X| ≥ 2. Let W∗ = {W (v1), . . . ,W (vp)} for some p ≥ 1. The
2-connectedness of G implies that any small witness set in W (and in W∗ in
particular) corresponds to a leaf of T . Due to this observation and properties
(1) and (2) in Definition 1, we know that at most one of the sets in W∗ can be
big. Suppose, for contradiction, that all the sets in W∗ are small. Then p ≥ 2
due to the assumption that |X| ≥ 2. Since small witness sets correspond to
leaves of T , each of the vertices v1, . . . , vp is a leaf in T . This implies that p = 2
and consequently |V (G)| = 2, contradicting the assumption that G has at least
three vertices. Consequently, exactly one of the sets in W∗, say W (v1), is big,
and every set in W∗ \W (v1) is small. Let W (pi) = {wi} for 2 ≤ i ≤ p. Since
each of the sets W (v2), . . . ,W (vp) is small, the vertices v2, . . . , vp are leaves in
T and {w2, . . . , wp} is an independent set in G. This, together with the fact
that witness sets are connected by definition, implies that W (v1) is a connected
vertex cover of G[X]. Moreover, since NT (V (T ) \ {v1, . . . , vp}) = {v1}, the set
W (v1) contains all the vertices of X̂. �

Claim 2 implies that if we replace every set X ∈ X with the sets of its
shatter W∗, consisting of exactly those sets of W that are contained in X, then
we would obtain exactly the T -witness structure W. However, recall that given
G and φ, we only know X , and not W. The next claim shows that we can find a
T ′-witness structure of G for some tree T ′ with at least as many vertices as T ,
without having to use the sets of W in the process.

Claim 3: If we replace each set X ∈ X by the sets of a minimum shatter of X,
then we obtain a T ′-witness structure of G for some tree T ′ that has at least as
many vertices as T .

Proof Let X ∈ X . If |X| = 1, then W∗ = {X} is the unique shatter of X.
Suppose |X| ≥ 2. As a result of Claim 2, X has a shatter W∗ consisting of sets
ofW; let W (v1) be the unique big witness set ofW inW∗, satisfying property (ii)
of Claim 2. From the proof of Claim 2, it is clear that the sets W (v1), . . . ,W (vp)
ofW∗ define an S-witness structure S of the graph G[X], where S is a star with
p− 1 leaves.

We now consider a minimum shatter of X, and we let C denote the unique set
in this minimum shatter that is a connected vertex cover of G[X] containing all
the vertices of X̂. By the definition of a minimum shatter, there is no connected
vertex cover C ′ of G[X] such that C ′ contains all the vertices of X̂ and |C ′| < |C|.
In particular, this means that |C| ≤ |W (v1)|. Moreover, since C is a vertex cover
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of G[X], the sets of the shatter define an S′-witness structure S ′ of the graph
G[X], where S′ is a star with at least p− 1 leaves. This means that replacing X
in X by the sets of a minimum shatter of X is at least as good as replacing X by
the sets of W ′. Since X̂ ⊆ C, we know that C is the only witness set of S ′ that
is adjacent to witness sets of X \ X, which ensures that the replacement of X
by the sets of a minimum shatter still yields a witness structure for a tree. We
conclude that if we replace each big witness set X ∈ X by the sets of a minimum
shatter of X, then we obtain a T ′-witness structure W ′ such that |W ′| ≥ |W|,
where T ′ is a tree on at least as many vertices as T . �

Due to Claim 3, it remains to prove that we can find a minimum shatter
of each X ∈ X in the mentioned running time, with sufficient high success
probability in the randomized case. We first describe a deterministic procedure,
proving the first part of the lemma, before presenting the randomized version.

Proof of part (i) Let X ∈ X . If |X| = 1, then a minimum shatter of X is simply
the set X itself. Suppose |X| ≥ 2. We then perform the following procedure
to find a minimum shatter of X. Recall that X̂ = NG(V (G) \ X), and that
we assumed the largest witness set of W to be of size d. We first construct a
graph G′ from the graph G[X] by adding, for each vertex x ∈ X̂, a new vertex
x′ and an edge xx′. Then we find a minimum connected vertex cover C of G′

by applying the algorithm of Proposition 2 for all values of t from 1 up to d.
Since φ is W-compatible and each witness set of W has size at most d, such a
set C will always be found. Observe that a minimum connected vertex cover of
G′ does not contain any vertex of degree 1, which implies that X̂ ⊆ C. From
the definition of a minimum shatter and the minimality of C, it follows that C,
together with the sets of size 1 formed by each of the vertices of X \ C, forms
a minimum shatter of X. Due to Proposition 2, we can find a minimum shatter
in 2.4882d nO(1) time for each set of X . Since X contains at most n sets and all
the other steps can be performed in polynomial time, the overall running time
for the deterministic case is 2.4882d nO(1).

Proof of part (ii) In order to prove the second part of the lemma, we describe
a randomized procedure that strongly resembles the above deterministic proce-
dure. The only difference is that we do not use the algorithm of Proposition 2
to find a minimum connected vertex cover C of the graph G′. Instead, for each
value of t from 1 to d, we run n times the algorithm of Proposition 3. Since each
witness set of W has size at most d, G′ has a minimum connected vertex cover
of size c for some c ≤ d. If we run the algorithm of Proposition 3 for t = c,
we find a minimum connected vertex cover of G′, and consequently a minimum
shatter of X, with probability at least 1/2. Repeating the algorithm n times for
t = c ensures that the probability of finding a minimum shatter of X is at least
1 − (1/2)n. We have to consider at most n sets in X . The probability that we
successfully find a minimum shatter of each of these sets is at least (1−(1/2)n)n.
This means that the probability of finding the desired witness structure W ′ is
at least (

1− 1
2n
)n
≥
(

1− 1
2n
)2n−1

≥ 1/e ,
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where the last inequality follows from Proposition 1. Note that we are only
guaranteed to find W ′ in case we find a minimum shatter of each set in X . For
each X ∈ X , we run the algorithm of Proposition 3 n times for each value of t
from 1 to d, which takes 2d nO(1) time in total. Since X contains at most n sets
and all the other steps can be performed in polynomial time, the overall running
time is 2d nO(1) in the randomized case. ut

We now present our randomized algorithm for Tree Contraction.

Theorem 3. There is a Monte Carlo algorithm solving Tree Contraction in
time 4k nO(1), using polynomial space. The algorithm cannot give false positives
and may give false negatives with probability at most 1/2.

Proof. We describe such a randomized algorithm. Let (G, k) be an instance of
Tree Contraction. Let us first assume that G is 2-connected. After presenting
the algorithm, proving its correctness and analyzing its running time, we then
turn our attention to the case where G is not 2-connected at the end of the proof.

The algorithm has an outer loop, which guesses the size d of the largest
witness set of a possible T -witness structure W of G for a tree T . In particular,
the outer loop iterates over all values of d from 1 to k + 1. For each value of d,
the algorithm runs the following inner loop, which is repeated 22k−d+2 times. At
each iteration of the inner loop, the algorithm generates a random 2-coloring φ
of G by choosing, independently and uniformly at random, one of two possible
colors for each vertex of G. It then runs the 2d nO(1) time randomized procedure
described in the proof of Lemma 2 for computing a minimum shatter for each of
the monochromatic components of φ, with the value d determined by the outer
loop. If this procedure yields a T ′-witness structure of G for a tree T ′ on at least
n − k vertices at some iteration of the inner loop, then the algorithm returns
“yes”. If none of the iterations of the inner loop yield such a witness structure,
the outer loop picks the next value of d. If none of the iterations of the outer
loop yield a T ′-witness structure of G for a tree T ′ on at least n − k vertices,
then the algorithm returns “no”.

Since the algorithm only outputs “yes” after it has found a tree T ′ such that
G is k-contractible to T ′, the algorithm never gives false positives. Hence, in
order to prove correctness, it remains to show that the algorithm answers “yes”
with probability at least 1/2 if G is k-contractible to a tree. Suppose G is k-
contractible to a tree T , and let W be a T -witness structure of G whose largest
witness set has size d∗. Note that d∗ ≤ k + 1 by Observation 1. Let ψ be a 2-
coloring of G such that each of the big witness sets of W is monochromatic with
respect to ψ, such that ψ(W (u)) 6= ψ(W (v)) whenever both W (u) and W (v) are
big witness sets and uv is an edge in T , and such that the vertices in the small
witness sets are all colored 1. Observe that ψ is aW-compatible 2-coloring of G,
as is any other 2-coloring of G that coincides with ψ on all the vertices of the big
witness sets ofW. The largest witness set ofW requires d∗−1 edge contractions,
after which our remaining budget of edge contractions is k−(d∗−1) = k−d∗+1.
As a result of Observation 1, the total number of vertices contained in big witness
sets is thus at most d∗+ 2(k− d∗+ 1) = 2k− d∗+ 2. Hence, the probability that
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a random 2-coloring φ coincides with ψ on all vertices contained in big witness
sets, and thus is W-compatible, is at least 1/(22k−d∗+2).

Recall that our algorithm iterates over all values of d from 1 to k + 1, and
that d∗ ≤ k + 1. At the correct iteration of the outer loop, i.e., at the iteration
where d = d∗, a random 2-coloring of G is generated at each of the 22k−d∗+2

iterations of the inner loop. The probability that none of these 22k−d∗+2 random
2-colorings is W-compatible is at most(

1− 1
22k−d∗+2

)22k−d∗+2

≤ 1/e ,

where the inequality follows from Proposition 1. In other words, with probability
at least 1/e, the algorithm will generate a W-compatible 2-coloring φ at some
iteration of the inner loop when d = d∗ in the outer loop. When processing φ
in this iteration, the algorithm will, as a result of Lemma 2, correctly conclude
that G is k-contractible to a tree with probability at least 1/e. We conclude that
the algorithm correctly outputs “yes” with probability at least 1/e · 1/e = 1/e2.
Running the entire algorithm five times reduces the probability of false negatives
to at most (1− 1

e2 )5 < 1/2.
Now let us analyze the running time of the algorithm. For each value of

d, the inner loop is repeated 22k−d+2 times, and each iteration of the inner
loop takes 2d nO(1) time by Lemma 2. Hence, each iteration of the outer loop
takes time 22k−d+2 2d nO(1) = 4k+1 nO(1). Since the algorithm performs at most
k + 1 iterations of the outer loop, this yields an overall running time of (k +
1)4k+1 nO(1) = 4k nO(1), where the equality follows from the observation that we
may assume that k ≤ n and n > 1.

Finally, we consider the case where the input graph G is not 2-connected. A
2-connected component of G is non-trivial if it contains at least three vertices,
and is trivial otherwise. Note that no edge contractions need to be made in
trivial 2-connected components. Let G1, . . . , Gq be the non-trivial 2-connected
components of G. The algorithm outputs “no” if q ≥ k + 1. The correctness of
this follows from the observation that in order to contract G to a tree, we need
to contract at least one edge of every non-trivial 2-connected component of G.
If q = 0, then G is already a tree and the algorithm outputs “yes”. If q = 1, then
we simply run the algorithm for the 2-connected case on the unique non-trivial
2-connected component of G. Now assume that 2 ≤ q ≤ k.

For each non-trivial 2-connected component Gi and each value of ki between
1 and k, we run the algorithm for the 2-connected case on the instance (Gi, ki)
3 log k times, and we let k∗i be the smallest value of ki for which at least one run of
the algorithm on (Gi, ki) outputs “yes”. Since the algorithm for the 2-connected
case does not give false positives, we know for sure that Gi is k∗i -contractible to
a tree. On the other hand, for a particular pair (Gi, ki), if Gi is ki-contractible
to a tree, then the probability that no run of the algorithm on (Gi, ki) outputs
“yes” is at most ( 1

2 )3 log k = 1
k3 . Since we have in total at most k2 pairs (Gi, ki),

and by the union bound on probabilities, the probability that there is a pair
(Gi, ki) for which the algorithm fails to report that Gi is ki-contractible to a
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tree even though it is, is upper bounded by k2 · 1
k3 ≤ 1/k. If such a failure does

not occur, then for every i we have that k∗i is exactly the smallest value of ki
such that Gi is ki-contractible to a tree. Finally, the algorithm answers “yes” if∑q
i=1 k

∗
i ≤ k, and answers “no” otherwise. The correctness of this immediately

follows from Lemma 1. Consequently, the algorithm cannot give false positives,
and it may give false negatives with probability at most 1/k ≤ 1/q ≤ 1/2, where
the two inequalities follows from the assumption that 2 ≤ q ≤ k.

Since we run the 4k nO(1) algorithm for the 2-connected case at most k2 ·
3 log k times, the total time taken to determine all the k∗i ’s is 4k nO(1). All other
steps of the algorithm take polynomial time. It is clear that the algorithm uses
polynomial space. ut

We now show that, at the cost of a slightly worse running time and exponen-
tial space usage, we can turn the algorithm of Theorem 3 into a deterministic
algorithm for Tree Contraction. In order to derandomize our algorithm, we
need to use the deterministic version of Lemma 2. We also need to avoid the use
of random 2-colorings in our algorithm. This can be done by utilizing the notion
of universal sets, defined as follows.

The restriction of a function f : X → Y to a set S ⊆ X is the function
f|S : S → Y such that f|S(s) = f(s) for every s ∈ S. An (n, t)-universal set F is
a set of functions from {1, 2, . . . , n} to {1, 2} such that for every S ⊆ {1, 2, . . . , n}
with |S| = t the set F|S = {f|S | f ∈ F} is equal to the set 2S of all the functions
from S to {1, 2}. It is clear from the definition that an (n, t)-universal set can
be interpreted as a set of 2-colorings of a graph on n vertices, and this is what
we will do in the proof of Theorem 5 below. The notion of (n, t)-universal sets
was introduced by Naor, Schulman and Srinivasan [36]. The following result is
due to Chen et al. [14], and is based on the construction of (n, t)-universal sets
proposed in [36].

Theorem 4 ([14]). There is an O(n2t+12 log2 t) time deterministic algorithm
that constructs an (n, t)-universal set of size bounded by n2t+12 log2 t+2.

Theorem 5. Tree Contraction can be solved in time 4.98k nO(1).

Proof. Let us first assume that the input graph G is 2-connected. We describe
a deterministic algorithm for Tree Contraction that strongly resembles the
randomized algorithm of Theorem 3. The only three differences between the
two algorithms are as follows. Firstly, for each value of d, the deterministic
algorithm constructs an (n, 2k − d + 2)-universal set Fd using the algorithm
of Theorem 4. Secondly, the inner loop of the deterministic algorithm iterates
over all 2-colorings φ ∈ Fd instead of generating a random 2-coloring at every
iteration. Thirdly, in each iteration of the inner loop, the deterministic algorithm
uses the 2.4882d nO(1) time deterministic procedure described in the proof of
Lemma 2 instead of the 2d nO(1) time randomized one.

To prove correctness of the deterministic algorithm, it suffices to show that
the algorithm always outputs “yes” if G is k-contractible to a tree. Suppose
G is k-contractible to a tree T . Let W be a T -witness structure of G, and let
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d∗ be the size of the largest witness set of W. As we argued in the proof of
Theorem 3, the total number of vertices contained in big witness sets of W is at
most 2k− d∗+ 2. At the iteration of the outer loop where d = d∗, the algorithm
generates an (n, 2k−d∗+2)-universal set Fd∗ , after which the inner loop iterates
over all 2-colorings in Fd∗ . By the definition of a universal set, the vertices in
the big witness sets are 2-colored in all possible ways by the colorings in Fd∗ .
Hence, Fd∗ contains at least one W-compatible 2-coloring φ. When processing
φ, the algorithm will correctly output “yes” as a result of Lemma 2.

Let us analyze the running time of this deterministic algorithm. For each d,
the size of Fd is at most n22k−d+2+12 log2(2k−d+2)+2, and Fd can be constructed
in O(n22k−d+2+12 log2(2k−d+2)) time, by Theorem 4. The inner loop iterates over
all 2-colorings in Fd, and each iteration takes 2.4882d nO(1) time by Lemma 2.
Since the outer loop iterates over all integer values of d from 1 to k + 1, the
overall running time of the algorithm is

∑k+1
d=1 |Fd| · 2.4882d nO(1). Note that∑k+1

i=1 22k−d · 2.4882d = 22k ·
∑k+1
i=1 1.2441d

≤ 22k · (k + 1) · 1.2441k+1

= 1.2441 · (k + 1) · 4.9764k .

We conclude that the overall running time of the described deterministic algo-
rithm is 4.98k nO(1). Here, we slightly rounded up the base of the exponent
in order to hide all other factors in the running time, including the factor
212 log2(2k−d+2).

Note that if the input graph G is not 2-connected, we can easily adapt the
deterministic algorithm in the way described in the last two paragraphs of the
proof of Theorem 3, without increasing the running time, such that it considers
the non-trivial 2-connected components of G one by one. ut

4 The Path Contraction Problem

Brouwer and Veldman [10] showed that, for every fixed ` ≥ 4, it is NP-complete
to decide whether a graph can be contracted to the path P`. This, together with
the observation that a graph G is k-contractible to a path if and only if G is
contractible to Pn−k, implies that Path Contraction is NP-complete. In the
observation below, we describe a simple brute-force procedure for solving Path
Contraction, which will be used as a subroutine in the algorithm presented in
Theorem 7. Throughout this section, whenever we mention a P`-witness struc-
ture W = {W1, . . .W`}, it will be implicit that P` = p1 · · · p`, and Wi = W (pi)
for every i ∈ {1, . . . , `}.

Observation 2 For any graph G and integer `, there is a 2n nO(1) time al-
gorithm that decides whether G is P`-contractible, and if so, generates all P`-
witness structures of G.

Proof. Let G be a graph that is P`-contractible for some integer `. Let W =
{W1, . . . ,W`} be a P`-witness structure of G. Consider a 2-coloring φ of G
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that colors the set Wi with color 1 if i is odd and with color 2 otherwise, for
i = 1, . . . , `. Note that the witness sets in W are exactly the monochromatic
components of φ. In other words, an edge uv of G is monochromatic if and only
if both u and v belong to the same witness set Wi. Hence, if we repeatedly
contract monochromatic edges, we end up with the path P`. Now consider the
algorithm that generates all 2n 2-colorings of G, and tests for each 2-coloring
in nO(1) time whether contracting all monochromatic edges yields the path P`.
It is clear that this algorithm decides in 2n nO(1) time whether or not G is P`-
contractible, and that it generates all P`-witness structures of G if such witness
structures exist. ut

In the remainder of this section, we first show that Path Contraction has
a linear vertex kernel. We then present a deterministic algorithm with running
time 2k+o(k) +nO(1) for this problem. Consider the following reduction rule (see
also Figure 2 for an illustration).

Rule 1 Let (G, k) be an instance of Path Contraction. If G contains a bridge
uv such that the deletion of edge uv from G results in two connected components
that contain at least k+2 vertices each, then transform the instance into (G′, k),
where G′ is the graph resulting from the contraction of edge uv.

u v
L′ R′

|L′| ≥ k + 1 |R′| ≥ k + 1

(G, k)

w
L′ R′

(G/uv, k)

Fig. 2. An illustration of Rule 1: bridge uv is contracted, since deleting uv from G
results in two connected components that contain at least k + 2 vertices each. Vertex
w in the graph G/uv is the vertex resulting from the contraction of the edge uv in G.

The following lemma shows that the above reduction rule is “safe”, i.e., that
it returns an equivalent instance of the problem. We then prove that this single
reduction rule yields a linear vertex kernel for Path Contraction.

Lemma 3. Let (G′, k) be an instance of Path Contraction resulting from
the application of Rule 1 on (G, k). Then G′ is k-contractible to a path if and
only if G is k-contractible to a path.

Proof. Let (G, k) be an instance of Path Contraction on which Rule 1 is
applicable, and let uv be the bridge of G that is contracted to obtain G′. Let
G1 and G2 be the two connected components that we obtain if we delete the
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edge uv from G, with L = V (G1) and R = V (G2), such that u ∈ L and v ∈ R.
Furthermore, let L′ = L \ {u} and R′ = R \ {v}, and let w be the vertex of G′

resulting from the contraction of uv in G (see Figure 2).
Assume that G is k-contractible to a path, and let E′ ⊆ E(G) with |E′| ≤ k

be a set of edges such that G/E′ is a path. Suppose uv ∈ E′. Then G′/(E′ \
uv) is a path, since G′/(E′ \ uv) = (G/uv)/(E′ \ uv) = G/E′. Hence G′ is
(k − 1)-contractible to a path. Now suppose uv /∈ E′. Observe that G′/E′ =
(G/uv)/E′ = (G/E′)/uv. Since G/E′ is a path, it is clear that (G/E′)/uv, and
consequently G′/E′, is also a path. Hence G′ is k-contractible to a path.

w

W ′
1 W ′

2 W ′
i W ′

`′−1 W ′
`′

u v

W1 W2 Wi Wi+1 W`′ W`′+1

Fig. 3. A P`′ -witness structure W ′ of G′ (top), and a P`′+1-witness structure W of G
(bottom) obtained from “splitting” the witness set W ′i into two new witness sets Wi

and Wi+1, keeping all other witness sets the same.

For the other direction, assume that G′ is k-contractible to a path P`′ , and
let W ′ = {W ′1, . . . ,W ′`′} be a P`′ -witness structure of G′ (see the top half of
Figure 3). Let W ′i be the witness set of W ′ containing w. Since G1 and G2

contain at least two vertices each, w is a cut vertex of G′. The set A =
⋃i−1
j=1W

′
j

is connected in G′−w = G−{u, v}. Hence A cannot contain vertices from both
L′ and R′, so it contains only elements of L′ or only elements of R′. Similarly,
the set B =

⋃`
j=i+1Wj contains only elements of L′, or only elements of R′. By

Observation 1, the set W ′i has size at most k + 1. Hence W ′i , which contains w,
does not contain all of L′, as |L′∪{w}| ≥ k+2. Similarly, W ′i does not contain all
of R′, as |R′ ∪{w}| ≥ k+ 2. Hence, neither A nor B is empty, one contains only
elements of R′ and the other only elements of L′. Consequently, by replacing
W ′i by two new sets (W ′i ∩ L′) ∪ {u} and (W ′i ∩R′) ∪ {v}, and keeping all other
witness sets of W ′ the same, we obtain a P`′+1-witness structure W of G (see
Figure 3). Hence G is k-contractible to a path. ut

We say that an instance (G, k) of Path Contraction is reduced if Rule 1
cannot be applied on (G, k).

Lemma 4. Let (G, k) be a reduced instance of Path Contraction. If (G, k)
is a yes-instance, then G has at most 5k + 3 vertices.
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Proof. Suppose (G, k) is a reduced instance of Path Contraction, and sup-
pose that (G, k) is a yes-instance. Then G is k-contractible to a path P` for
some ` ≥ n − k. Let W = {W1, . . . ,W`} be a P`-witness structure of G. First
assume that ` ≤ 2k+ 3. Then, since ` ≥ n− k, we have n ≤ 3k+ 3. Now assume
that ` ≥ 2k + 4, and let i be such that k + 2 ≤ i ≤ ` − k − 2. Suppose, for
contradiction, that both Wi and Wi+1 are small witness sets, i.e., Wi = {u} and
Wi+1 = {v} for two vertices u and v of G (see the top half of Figure 4). Then
uv forms a bridge in G whose deletion results in two connected components.
Each of these components contains at least all vertices from W1, . . . ,Wk+2 or all
vertices from W`−k−1, . . . ,W`. Hence they contain at least k + 2 vertices each.
Consequently, Rule 1 can be applied, contradicting the assumption that (G, k)
is a reduced instance. So there are no two consecutive small witness sets among
Wk+2, . . . ,W`−k−1 (see the bottom half of Figure 4). Since W contains at most
k big witness sets by Observation 1, at most k+ 1 small witness sets can appear
among Wk+2, . . . ,W`−k−1. Hence (` − k − 1) − (k + 2) + 1 ≤ 2k + 1, implying
` ≤ 4k + 3. Combining this with the earlier assumption that ` ≥ n − k yields
n ≤ 5k + 3. ut

︸ ︷︷ ︸
k + 1

︸ ︷︷ ︸
k + 1

u v

W1 W2 Wi Wi+1Wk+2 W`−k−1 W`

︸ ︷︷ ︸
k + 1

︸ ︷︷ ︸
k + 1

︸ ︷︷ ︸
≤ 2k + 1

W1 W2 Wk+2 W`−k−1 W`

Fig. 4. Illustration for the proof of Lemma 4. If among the witness sets
Wk+2, . . . ,W`−k−1 two consecutive witness sets Wi and Wi+1 are small (top), then
Rule 1 can be applied on the instance (G, k). If no two consecutive witness sets among
Wk+2, . . . ,W`−k−1 are small (bottom), then ` ≤ 4k + 3.

Theorem 6. Path Contraction has a kernel with at most 5k + 3 vertices.

Proof. We describe a polynomial-time kernelization algorithm for Path Con-
traction. Given an instance (G, k), the algorithm repeatedly tests, in linear
time, whether Rule 1 can be applied on the instance under consideration, and ap-
plies the reduction rule if possible. Each application of Rule 1 strictly decreases
the number of vertices. Hence, starting from the instance (G, k), we reach in
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polynomial time a reduced instance (G′, k) on which Rule 1 cannot be applied
anymore. The algorithm outputs the instance (G′, k) if |V (G′)| ≤ 5k + 3, and
outputs a trivial no-instance of constant size otherwise. By Lemma 3, we know
that G′ is k-contractible to a path if and only if G is k-contractible to a path.
Moreover, G′ is not k-contractible to a path if |V (G′)| > 5k + 3 as a result of
Lemma 4. This proves the correctness of the described kernelization algorithm.

ut

Theorem 6 easily implies a 32k kO(1) + nO(1) time algorithm for Path Con-
traction: given an instance (G, k) of the problem, transform it into an equiva-
lent instance (G′, k) in time nO(1), such that G′ has at most 5k+ 3 vertices, and
then use Observation 2 to decide whether G′ is k-contractible to a path. The
natural follow-up question, which we answer affirmatively below, is whether this
running time can be significantly improved.

Theorem 7. Path Contraction can be solved in time 2k+o(k) + nO(1).

Proof. Given an instance (G, k) of Path Contraction, our algorithm first
constructs an equivalent instance (G′, k) such that G′ has at most 5k+3 vertices.
This can be done in nO(1) time by Theorem 6. For the rest of the proof, we assume
that the input graph G has n ≤ 5k + 3 vertices. The algorithm distinguishes
between the following two cases.

Case 1: G has at most k + b
√
kc vertices.

In this case, the algorithm runs the procedure described in the proof of Ob-
servation 2 to determine, for all values of ` from n down to 1, whether or not
G is P`-contractible. This way, it finds the largest integer `′ for which G is
P`′ -contractible. The algorithm outputs “yes” if `′ ≥ n − k, and outputs “no”
otherwise.

Case 2: G has more than k + b
√
kc vertices.

In this case, the algorithm first generates all subsets W ⊆ V (G) of size at most
(5k+3)/b

√
kc. Then, for each generated subset W , it checks whether W satisfies

the following three conditions:

– the graph G−W has at most (5k + 3)/b
√
kc+ 1 connected components;

– all the connected components of G−W have at most k+ b
√
kc− 1 vertices;

– contracting each connected component of G −W into a single vertex and
contracting each connected component of G[W ] into a single vertex yields a
path.

If a set W does not satisfy all three conditions, then it is discarded. Each set W
that is not discarded, is called a candidate. For each candidate W , the algorithm
considers each connected component Gi of G−W . Note that Gi is adjacent to
one or two connected components of G[W ] by the definition of a candidate. The
algorithm distinguishes between the two different cases as follows.
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If V (Gi) is adjacent to exactly two connected components L and R of G[W ],
then the algorithm checks whether Gi is Pb√kc−1-contractible and if so, gener-
ates all Pb√kc−1-witness structures of Gi using the procedure described in Ob-
servation 2. For each such witness structure X = {X1, . . . , Xb

√
kc−1}, it checks

whether X1 is the only set of X that is adjacent to L and Xb
√
kc−1 is the

only set of X that is adjacent to R, or vice versa. If so, we let Xi denote this
Pb
√
kc−1-witness structure of Gi, and the algorithm proceeds to the next con-

nected component Gi. Otherwise, the algorithm discards W and proceeds to the
next set W , or outputs “no” if all sets W have been processed.

If V (Gi) is adjacent to exactly one connected component L of G[W ], then
the algorithm does as follows. For all integer values of ` from b

√
kc − 1 down

to 1, the algorithms checks whether Gi is P`-contractible and if so, generates all
P`-witness structures of Gi using the procedure described in Observation 2. For
each P`-witness structure X = {X1, . . . , X`} of Gi, it checks whether either X1

or X` is the only set of X that is adjacent to L. Let `′ be the largest value of `
for which Gi has such a witness structure, and let Xi denote the corresponding
P`′-witness structure of Gi. Note that `′ ≥ 1, since Gi clearly has a trivial P1-
witness structure (with V (Gi) as its single witness set) that satisfies the required
property.

Suppose the algorithm successfully processed all connected components of
G−W , and obtained a witness structure Xi for each connected component Gi.
The algorithm now checks whether all these witness structures Xi, together with
the vertex sets of the connected components of G[W ], form a P -witness structure
of G for some path P on at least n − k vertices. Note that this can easily be
done in polynomial time by contracting all edges that have both endpoints in the
same witness set, or in the same connected component of G[W ], and checking
whether the obtained graph is a path on at least n− k vertices. The algorithm
outputs “yes” if this is the case. Otherwise, the algorithm tries the next subset
W , or outputs “no” if all subsets W have been considered.

W1 W2 Wj−1 Wj Wj+ab
√

kc Wj+(a+1)b
√

kc W`

︸ ︷︷ ︸
G1

︸ ︷︷ ︸
Gi

Fig. 5. Schematic illustration of the P`-witness structure W of G, mentioned in the
correctness proof of the algorithm in Theorem 7. The shaded witness sets form the
set W ∗j . The vertices in the sets W1, . . . ,Wj−1 induce the graph G1, which is an end-
component of G −W ∗j . Let Gi be a connected component of G −W ∗j that is not an
end-component, i.e., Gi is the graph induced by the vertices of those witness sets of
W that appear between the sets Wj+ab

√
kc and Wj+(a+1)b

√
kc for some integer a. Note

that these witness sets Wj+ab
√

kc+1, . . . ,Wj+(a+1)b
√

kc−1 constitute a Pb
√

kc−1-witness
structure Xi of Gi.
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We now prove the correctness of the algorithm described above. The correct-
ness of Case 1 follows from the observation that G is k-contractible to a path if
and only if G is P`-contractible for some ` ≥ n− k.

Let us now analyze Case 2. Suppose G is k-contractible to a path P` for some
` ≥ n − k. Since G has more than k + b

√
kc vertices in Case 2, we know that

` > b
√
kc. LetW = {W1, . . . ,W`} be a P`-witness structure of G; see Figure 5 for

an illustration. We define W ∗i = Wi ∪Wi+b
√
kc ∪Wi+2b

√
kc ∪ . . ., for each integer

i with 1 ≤ i ≤ b
√
kc. Since G has at most 5k + 3 vertices, there is at least one

index j such that |W ∗j | ≤ (5k + 3)/b
√
kc. Let G1, . . . , Gp denote the connected

components of G−W ∗j , where p ≤ (5k+3)/b
√
kc+1. A connected component of

G−W ∗j that is adjacent to exactly one of the connected components of G[W ∗j ]
is called an end-component. Each connected component Gi has a P ′-witness
structure Xi for some path P ′ on at most b

√
kc − 1 vertices, such that the sets

of Xi are exactly those sets of W that contain the vertices of Gi. Note that
the path P ′ has exactly b

√
kc − 1 vertices if Gi is not an end-component (see

Figure 5). Moreover, the union of all these witness structures Xi, together with
the sets Wj ,Wj+b

√
kc, . . ., clearly forms the P`-witness structure W of G. Each

connected component Gi has at most k+ b
√
kc−1 vertices by Observation 1. In

fact, it is easy to see that W ∗j satisfies each of the three properties of a candidate,
defined in Case 2 of the algorithm. Hence, at some point, the set W that the
algorithm considers will be exactly the set W ∗j . From the above it is clear that
in this case, the algorithm will correctly output “yes”.

It remains to perform a running time analysis. Since G has k +
√
k vertices

in Case 1, the algorithm runs the procedure of Observation 2 at most k +
√
k

times, each time taking 2k+
√
k (k +

√
k)O(1) = 2k+o(k) time. Hence the overall

running time in Case 1 is 2k+o(k). In Case 2, the algorithm considers no more
than (5k + 3)(5k+3)/b

√
kc = 2o(k) subsets W ⊆ V (G). For each generated set

W , the 2k+o(k) time procedure of Observation 2 is performed at most b
√
kc − 1

times on each of the O(
√
k) connected components of G−W . Since all additional

checks can clearly be performed in polynomial time and G has at most 5k + 3
vertices, we get a total running time of 2k+o(k) also for this case. ut

5 Concluding Remarks

The number of edges to contract in order to obtain a certain graph property is a
natural measure of how close the input graph is to having that property, similar
to the more established similarity measures of the number of edges or vertices
to delete. The latter measures are well studied when the desired property is be-
ing acyclic or being a path, defining some of the most widely known and well
studied problems within parameterized complexity. Inspired by this, we gave
kernelization results and fast fixed-parameter algorithms for Tree Contrac-
tion and Path Contraction. We think our results motivate the parameterized
study of similar problems, an example of which is Interval Contraction. It
is not known whether the vertex deletion variant of this problem, Interval
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Vertex Deletion, is fixed-parameter tractable. Is Interval Contraction
fixed-parameter tractable?

As is common in the initial study of the parameterized complexity of graph
modification problems, we chose the number of allowed operations k to be the
parameter in our study of Tree Contraction and Path Contraction. An
interesting question is whether similar positive results for these two problems can
be obtained with respect to other parameters, such as the treewidth t of the in-
put graph. Courcelle’s Theorem implies that both problems are fixed-parameter
tractable with this parameter, and it is possible to solve both problems in time
tO(t) nO(1) using a dynamic programming approach. However, a much more chal-
lenging task is to decide whether the problems can be solved in time ct nO(1) for
some constant c. Recently, Cygan et al. [17] developed a powerful technique for
identifying connectivity problems that allow (randomized) algorithms with this
time complexity. Soon after, Pilipczuk [39] provided a logical framework for ob-
taining similar results. We point out that it does not seem easy at all to apply
the Cut&Count technique of Cygan et al. [17] to our problems, nor is it clear
how to formulate our problems in Pilipczuk’s [39] existential counting modal
logic. Hence, a further study of the problems Tree Contraction and Path
Contraction with respect to different parameters such as treewidth seems to
be an interesting direction for further research.

Very recently, Cygan [16] announced a deterministic algorithm solving Con-
nected Vertex Cover in time 2t nO(1), using polynomial space. If we use
Cygan’s algorithm instead of the algorithms of Propositions 2 and 3, adapting
Lemma 2 accordingly, then the running time of our deterministic algorithm for
Tree Contraction drops to 4k nO(1).
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