
Induced Subtrees in Interval Graphs?

Pinar Heggernes1, Pim van ’t Hof1, and Martin Milanič2

1 Department of Informatics, University of Bergen, Norway
{pinar.heggernes,pim.vanthof}@ii.uib.no

2 UP IAM and UP FAMNIT, University of Primorska, Slovenia
martin.milanic@upr.si

Abstract. The Induced Subtree Isomorphism problem takes as input a
graph G and a tree T , and the task is to decide whether G has an induced
subgraph that is isomorphic to T . This problem is known to be NP-complete
on bipartite graphs, but it can be solved in polynomial time when G is a
forest. We show that Induced Subtree Isomorphism can be solved in
polynomial time when G is an interval graph. In contrast to this positive
result, we show that the closely related Subtree Isomorphism problem is
NP-complete even when G is restricted to the class of proper interval graphs,
a well-known subclass of interval graphs.

1 Introduction and Background

The problems Subgraph Isomorphism and Induced Subgraph Isomorphism
both take as input two graphsG andH, and the task is to determine whetherG has a
subgraph or an induced subgraph, respectively, that is isomorphic to H. Subgraph
Isomorphism and Induced Subgraph Isomorphism are two well-studied and
notoriously hard problems in the area of graph algorithms, generalizing classical
NP-complete problems such as Clique, Independent Set and Hamiltonian
Path.

Both Subgraph Isomorphism and Induced Subgraph Isomorphism are
known to be NP-complete already when each of G and H is a disjoint union of
paths [7, 9], and thus both problems are NP-complete on any hereditary graph
class that contains arbitrarily long induced paths. In particular, both problems are
NP-complete on proper interval graphs and on bipartite permutation graphs. Inter-
estingly, Induced Subgraph Isomorphism can be solved in polynomial time on
connected proper interval graphs and connected bipartite permutation graphs [13],
whereas Subgraph Isomorphism remains NP-complete on these connected graph
classes [16]. Both problems can be solved in polynomial time when G is a forest and
H is a tree [23], but remain NP-complete when G is a tree and H is a forest [9].

The problems Subgraph Isomorphism and Induced Subgraph Isomor-
phism remain hard also on several classes of graphs that do not contain long induced
paths. For example, both problems are NP-complete on connected cographs [1,5,7],

? This work is supported by the Research Council of Norway, by the Slovenian Research
Agency, and by the European Science Foundation.

and remain NP-complete even on connected trivially perfect graphs [2, 16], a sub-
class of cographs. Both Subgraph Isomorphism and Induced Subgraph Iso-
morphism are also NP-complete when both input graphs are split graphs [7, 11].
Kijima et al. [16] showed that Subgraph Isomorphism is NP-complete when G is
restricted to the class of chain graphs, cochain graphs, or threshold graphs, but the
problem becomes polynomial-time solvable when, in addition, H is also restricted
to the same class as G.

Given the large amount of hardness results on the two problems, even under
severe restrictions on G, it makes sense to consider different restrictions on H in
an attempt to obtain tractability. A natural candidate for such a restriction is
demanding H to be a tree. This brings us to the two problems that we focus on in
this paper:

(Induced) Subtree Isomorphism
Input: A graph G and a tree T .
Question: Does G have an (induced) subgraph isomorphic to T?

Since Subtree Isomorphism is a generalization of Hamiltonian Path, this prob-
lem is NP-complete on all graph classes on which Hamiltonian Path is NP-
complete, like planar graphs, chordal bipartite graphs, and strongly chordal split
graphs [9, 26]. Similarly, the fact that finding a longest induced path in a bipartite
graph is NP-hard [9] implies that Induced Subtree Isomorphism is NP-complete
on bipartite graphs. Both Subtree Isomorphism and Induced Subtree Iso-
morphism are also NP-complete on graphs of treewidth at most 2 [22], but can be
solved in polynomial time when G is a forest [23].

The main result of this paper is a polynomial-time algorithm for Induced Sub-
tree Isomorphism on interval graphs, which gives a nice contrast to the NP-
completeness of Induced Subgraph Isomorphism on this graph class. On the
negative side, we show that Subtree Isomorphism is NP-complete already on
proper interval graphs. Note that the problem of finding a longest path in an in-
terval graph can be solved in polynomial time [14] (and even on cocomparability
graphs [24]). Hence, our negative result on proper interval graphs shows that finding
a given tree as a subgraph in a proper interval graph is much harder than finding
a path of given length in such a graph, despite the linear structure that proper
interval graphs possess.

2 Definitions and Notation

All graphs considered in this paper are finite, undirected and simple. We refer to the
monograph by Diestel [8] for basic graph terminology not defined below. Detailed
information on all the graph classes mentioned in this paper can be found in the
books by Golumbic [12] and Brandstädt, Le, and Spinrad [3]. Figure 1 below shows
the inclusion relations between most of the graph classes mentioned this paper.

A graph is an interval graph if there is a bijection between its vertices and a
family of closed intervals of the real line such that two vertices are adjacent if and
only if the two corresponding intervals overlap. Such a bijection is called an interval

2

perfect

chordal

forest

tree

split interval cograph bipartite line graph of
bipartite

threshold

proper interval trivially perfect

line graph

Fig. 1. An overview of most of the graph classes mentioned in this paper. An arrow from
a class G to a class H indicates that H is a subset of G.

representation of the graph. A graph is a proper interval graph if it has an interval
representation where no interval properly contains another interval. Many different
characterizations of interval graphs are known in the literature. In order to state
the one we will use in our algorithm, we need the following definition.

Definition 1. Let G = (V,E) be a graph. An ordering (u1, . . . , un) of V is called
an interval order of G if, for every triple (i, j, k) with 1 ≤ i < j < k ≤ n, it holds
that uiuk ∈ E implies ujuk ∈ E.

Olariu [27] showed that a graph G is an interval graph if and only if G has an
interval order.

A tree is a connected graph without cycles. Let G be a graph and let T be a
tree. If G has a induced subgraph that is isomorphic to T , then we say that T is an
induced subtree of G; a subtree of G is defined analogously. A tree T is a caterpillar if
it has a path that contains every vertex of degree at least 2 in T ; such a path is called
a backbone of T . A well-known characterization of interval graphs by Lekkerkerker
and Boland [20] immediately implies that a tree is an interval graph if and only if
it is a caterpillar.

Let G and H be two graphs. A mapping ϕ : V (H) → V (G) is said to be an
induced subgraph isomorphism, or isi mapping for short, of H into G, if ϕ is injective
and uv ∈ E(H) if and only if ϕ(u)ϕ(v) ∈ E(G) for all u, v ∈ V (H). Consequently,
H is an induced subgraph of G if and only if there exists an isi mapping of H
into G.

3 Induced Subtree Isomorphism on Interval Graphs

In this section, we show that Induced Subtree Isomorphism can be solved in
polynomial time on interval graphs. Before presenting our algorithm in the proof of
Theorem 1 below, we first prove a sequence of five lemmas, as well as a corollary of
these lemmas that forms the main ingredient of our algorithm.

3

Throughout this section, up to the statement of Theorem 1, let G = (V,E) be
a connected interval graph and let T be a caterpillar on at least three vertices. We
fix an interval order σ = (u1, . . . , un) of G. For any two vertices x, y ∈ V , we write
x ≺σ y if x appears before y in the interval order σ, i.e., if x = ui and y = uj for
some i < j.

Suppose there exists an isi mapping ϕ of T into G. Then, for any ordered path
P = (t1, . . . , tp) of T , we say that P is ϕ-increasing if ϕ(t1) ≺σ ϕ(t2) ≺σ · · · ≺σ ϕ(tp),
and P is ϕ-decreasing if ϕ(tp) ≺σ ϕ(tp−1) ≺σ · · · ≺σ ϕ(t1).

Lemma 1. Let P = (t1, . . . , tp) be an ordered path in T whose vertices all have
degree at least 2 in T . Then, for any isi mapping ϕ of T into G, the path P is either
ϕ-increasing or ϕ-decreasing.

Proof. The statement is trivially true if p ≤ 2. Let p ≥ 3. Suppose, for contra-
diction, that there exists an isi mapping ϕ of T into G such that P is neither
ϕ-increasing nor ϕ-decreasing. Then, in particular, there exist three consecutive
vertices ti, ti+1, ti+2 of P such that the ordered path (ti, ti+1, ti+2) is neither ϕ-
increasing nor ϕ-decreasing. Let uj1 = ϕ(ti), uj2 = ϕ(ti+1) and uj3 = ϕ(ti+2).
Without loss of generality, we may assume that j1 < j3. Observe that Definition 1
implies that j1 < j2. Since we assumed the ordered path (ti, ti+1, ti+2) to be neither
ϕ-increasing nor ϕ-decreasing, it holds that j2 > j3.

Let w be a T -neighbor of ti+2 other than ti+1; such a vertex w exists since we
assume that all vertices of P have degree at least 2 in T . Let ujw = ϕ(w). We
consider three cases according to the value of jw.

– Suppose that jw < j1. Since ϕ preserves adjacencies and wti+2 ∈ E(T), we
have ujwuj3 ∈ E(G). On the other hand, since ϕ preserves non-adjacencies and
titi+2 6∈ E(T), we have uj1uj3 6∈ E(G). However, this contradicts Definition 1
applied to the triple (i, j, k) = (jw, j1, j3).

– Suppose that j1 < jw < j2. Since ϕ preserves adjacencies and titi+1 ∈ E(T),
we have uj1uj2 ∈ E(G). On the other hand, since ϕ preserves non-adjacencies
and wti+1 6∈ E(T), we have ujwuj2 6∈ E(G). Again, we have a contradiction to
Definition 1, this time for the triple (i, j, k) = (j1, jw, j2).

– Suppose that j2 < jw. Since ϕ preserves adjacencies and ti+2w ∈ E(T), we
have uj3ujw ∈ E(G). On the other hand, since ϕ preserves non-adjacencies and
ti+1w 6∈ E(T), we have uj2ujw 6∈ E(G). We have a contradiction to Definition 1
for the triple (i, j, k) = (j3, j2, jw).

This completes the proof of the lemma. ut

We will show in Lemma 2 below that the problem of determining whether G
has an induced subgraph isomorphic to T can be reduced to computing the values
of a certain Boolean-valued function fB for each B ∈ B, where B is a set of three
or four so-called representative backbones of T . In order to state the lemma, we first
need to define the set B and the function fB .

Recall that a backbone of T is any path B containing all vertices of degree
at least 2 in T . The order of a backbone B is the number of vertices in B and is
denoted by |B|. For any ordered backbone B = (t1, t2, . . . , tp), the ordered backbone

4

B−1 = (tp, tp−1, . . . , t1) is called the reverse of B. Given two ordered backbones
B = (t1, t2, . . . , tp) and B′ = (t′1, . . . , t

′
p′) of T , we say that B and B′ are equivalent

if p = p′ and ti = t′i for all i ∈ {1, 2, . . . , p− 1}.
We now define a set B consisting of three or four non-equivalent ordered back-

bones of T as follows. Let Bmin = (t1, t2, . . . , tp) be an ordered backbone of T of
minimum order, i.e., Bmin is an ordered backbone of T whose vertex set consists of
exactly those vertices that have degree at least 2 in T . Let B−1min = (tp, tp−1, . . . , t1)
be the reverse of Bmin, where Bmin = B−1min if p = 1. Note that every ordered back-
bone of T other than Bmin or B−1min contains either |V (Bmin)|+ 1 or |V (Bmin)|+ 2
vertices. Let us fix a neighbor t′1 of t1 and a neighbor t′p of tp such that t′1 6= tp and
such that both t′1 and t′p have degree 1 in T . Such neighbors t′1 and t′p exist due to the
fact that both t1 and tp have degree at least 2 in T and the assumption that T has at
least three vertices. We now define two ordered backbones B+ = (t1, t2, . . . , tp, t

′
p)

and B− = (tp, tp−1, . . . , t1, t
′
1). Finally, we define B = {Bmin, B

−1
min, B

+, B−}. The
backbones in B are called the representative backbones of T . Since we assume that
T contains at least 3 vertices and Bmin = B−1min if and only if p = 1, we have that
|B| = 3 if p = 1 and |B| = 4 if p ≥ 2.

Let B = (t1, . . . , tp) ∈ B be a representative backbone of T . For every i ∈
{1, . . . , p}, let Bi denote the subgraph of T induced by the first i vertices of B
together with their neighbors outside the backbone, that is,

Bi = T
[{
t1, . . . , ti

}
∪ L1 ∪ . . . ∪ Li

]
,

where Li denotes the set of neighbors of ti outside B, i.e., Li = NT (ti) \ V (B).
The following straightforward property of representative backbones will be useful
in later proofs.

Observation 1 For every representative backbone B = (t1, . . . , tp) ∈ B and every
i ∈ {1, . . . , p}, vertex ti has a neighbor in Bi. ut

For 1 ≤ j < k ≤ n, let Gkj denote the subgraph of G induced by {u1, . . . , uj , uk},
that is,

Gkj = G
[{
u1, . . . , uj , uk

}]
.

With these definitions in mind, we define a Boolean-valued function fB : TB →
{0, 1}, where

TB = {(i, j, k) | 1 ≤ i ≤ p and 1 ≤ j < k ≤ n},

as follows: for all (i, j, k) ∈ TB , we set fB(i, j, k) = 1 if and only if there exists an
isi mapping ϕ of Bi into Gkj such that ϕ(ti) = uk.

Lemma 2. Graph G has an induced subgraph isomorphic to T if and only if there
exists a backbone B ∈ B and an integer k ∈ {2, . . . , n} such that fB(|B|, k−1, k) = 1.

Proof. Suppose first that there exists a backbone B ∈ B and an integer k with 1 <
k ≤ n such that fB(|B|, k − 1, k) = 1. Then, denoting B = (t1, . . . , tp), there exists
an isi mapping ϕ of Bp = T into Gkk−1 = G[{u1, . . . , uk}] such that ϕ(tp) = uk.

5

Trivially, ϕ is an isi mapping of T into G, and hence G has an induced subgraph
isomorphic to T .

Conversely, suppose G has an induced subgraph that is isomorphic to T . Then
there exists an isi mapping ϕ of T into G. Since every vertex of Bmin and B−1min has
degree at least 2 in T , either Bmin or B−1min is ϕ-increasing due to Lemma 1. Among
all pairs (ϕ,B) where ϕ is an isi mapping of T into G and B is a ϕ-increasing
backbone in B, choose a pair (ϕ,B) such that B = (t1, . . . , tp) ∈ B is of maximum
possible order. Let ϕ(tj) = uij for all j ∈ {1, . . . , p}. Let k = ip.

We claim that, with B and k defined as above, it holds that fB(p, k− 1, k) = 1.
By definition of fB , this is equivalent to verifying the existence of an isi mapping
ψ of Bp = T into Gkk−1 = G[{u1, . . . , uk}] such that ψ(tp) = uk. We claim that
such a mapping is obtained by taking ψ = ϕ. Condition ψ(tp) = uk follows from
the definition of k, and the fact that ψ is an injective mapping that preserves
adjacencies and non-adjacencies follows trivially from the corresponding properties
of ϕ. It remains to verify that ψ(T) = ϕ(T) ⊆ {u1, . . . , uk}.

Suppose for a contradiction that there exists a vertex v ∈ V (T) such that ϕ(v) =
ur for r > k. Since B is ϕ-increasing, we have ij ≤ ip = k for all 1 ≤ j ≤ p, and
hence v is not a vertex of B. Therefore, vertex v has a unique neighbor tj in B.
Suppose first that 1 ≤ j < p. Then, p ≥ 2 and since ϕ preserves adjacencies and non-
adjacencies, we conclude that uijur ∈ E(G) and ukur 6∈ E(G), which contradicts
Definition 1 applied to the triple (ij , k, r) with ij < k < r. Therefore, we may assume
that j = p, and v is adjacent to tp. Consider the backbone B′ = (t1, . . . , tp, v) of T ,
and let B′′ ∈ B be a backbone in B equivalent to B′. Since B′′ is equivalent to B′,
there exists a neighbor w of tp such that B′′ = (t1, . . . , tp, w). By the maximality of
B, it follows that B′′ is not ϕ-increasing, and consequently ϕ(w) = us where s < k.
Consider the mapping ϕ′ : V (T)→ V (G) obtained from ϕ by switching the images
of v and w. Formally, for every t ∈ V (T), set

ϕ′(t) =

 ϕ(t) if t 6∈ {v, w} ;
ϕ(w) if t = v ;
ϕ(v) if t = w .

Then ϕ′ is an isi mapping of T into G. However, since ϕ′(w) = ϕ(v) = ur and r > k,
backbone B′′ is a ϕ′-increasing backbone strictly longer than B, contradicting the
definition of the pair (ϕ,B). This shows that if T is isomorphic to an induced
subgraph of G, then there exists a backbone B ∈ B and an integer k with 1 < k ≤ n
such that fB(|B|, k − 1, k) = 1. ut

In what follows, we show that for any backbone B ∈ B, the values of the function
fB can be computed recursively. Definition 1 implies that for every j ∈ {1, . . . , n},
there exists an index `(j) ≤ j such that NGj

[uj] = {u`(j), u`(j)+1, . . . , uj}, where Gj
denotes the subgraph of G induced by {u1, . . . , uj}. Also recall that for any given
backbone B = (t1, . . . , tp) ∈ B and any i ∈ {1, . . . , p}, we write Li to denote the set
of neighbors of ti outside B.

First, we consider the simplest case, namely computing fB(i, j, k) when i = 1.

Lemma 3. Let B ∈ B be a representative backbone of T , and let (1, j, k) ∈ TB.
Then fB(1, j, k) = 1 if and only if α(G[{u`(k), . . . , uj}]) ≥ |L1| .

6

Proof. The definition of fB implies that fB(1, j, k) = 1 if and only if there exists
an isi mapping ϕ of B1 into Gkj such that ϕ(t1) = uk. Notice that B1 is isomorphic

to a star with |L1| leaves. Hence, there exists an isi mapping ϕ of B1 into Gkj such
that ϕ(t1) = uk if and only if uk has at least |L1| pairwise non-adjacent neighbors
in the graph Gkj . But this last condition is equivalent to the condition that the
independence number of the subgraph of G induced by {u`(k), . . . , uj} is at least
|L1|. ut

Now, let us consider the problem of computing the value of fB(i, j, k) for some
(i, j, k) ∈ TB with i > 1, assuming that we have already computed the values of
fB(i′, j′, k′) for all (i′, j′, k′) ∈ TB with i′ < i. Lemma 4 states a necessary condition
for fB(i, j, k) = 1.

Lemma 4. Let B ∈ B be a representative backbone of T , and let (i, j, k) be a
triple in TB with i ≥ 2 such that fB(i, j, k) = 1. Then there exists an integer
k′ ∈ {`(k), . . . , j} such that

fB(i− 1, `(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| .

Proof. Suppose that the conditions in the lemma are satisfied. By the definition
of fB , there exists an isi mapping ϕ of Bi into Gkj such that ϕ(ti) = uk. Let
k′ ∈ {1, . . . , n} be the index satisfying ϕ(ti−1) = uk′ . Let us verify that k′ has
all the desired properties. First of all, it holds that k′ ≤ j, since k′ 6= k by the
injectivity of ϕ and since ϕ maps V (Bi) to V (Gkj) = {u1, . . . , uj , uk}. Second, since
ϕ preserves adjacencies and ti−1ti ∈ E(T), we have uk′uk = ϕ(ti−1)ϕ(ti) ∈ E(G).
Consequently, uk′ ∈ NGk

[uk] and hence k′ ≥ `(k).
Now, let us show that fB(i − 1, `(k) − 1, k′) = 1. This is equivalent to showing

the existence of an isi mapping ϕ′ of Bi−1 into Gk
′

`(k)−1 such that ϕ′(ti−1) = uk′ .

Let ϕ′ be the restriction of ϕ to V (Bi−1). We will verify that ϕ′ is an isi mapping
of Bi−1 into Gk

′

`(k)−1 such that ϕ′(ti−1) = uk′ . Since ϕ is an injective mapping that

preserves adjacencies and non-adjacencies, so is ϕ′. The condition ϕ′(ti−1) = uk′ is
also satisfied, by the definition of k′. It remains to verify that for every w ∈ V (Bi−1),
we have ϕ′(w) ∈ V (Gk

′

`(k)−1), or, equivalently, that ϕ(w) ∈ {u1, . . . , u`(k)−1, uk′}. For

w = ti−1, this is clear, and we only need to check that ϕ(w) ∈ {u1, . . . , u`(k)−1} for
all w ∈ V (Bi−1)\{ti−1}. Suppose for a contradiction that there exists a vertex w ∈
V (Bi−1)\{ti−1} with ϕ(w) = ur for some r ∈ {`(k), . . . , j}. Then uruk ∈ E(G), and
since ϕ preserves non-adjacencies, this implies wti ∈ E(T). This contradiction to the
fact that the only neighbor of ti in Bi−1 is ti−1 implies that fB(i−1, `(k)−1, k′) = 1,
as claimed.

It remains to show that the independence number of the graph G′ =
G
[
{uk′+1, . . . , uj} \ NG(uk′)

]
satisfies α(G′) ≥ |Li| . The vertices of Li form an

independent set of size |Li| in Bi, and since ϕ is an injective mapping preserving
non-adjacencies, its image ϕ(Li) is an independent set of size |Li| in Gkj . Since ϕ pre-
serves non-adjacencies and Li∩NBi

(ti−1) = ∅, we have ϕ(Li)∩NG(uk′) = ∅. Hence,
it is enough to show that ϕ(Li) ⊆ {uk′+1, . . . , uj}. Clearly, ϕ(Li) ⊆ {u1, . . . , uj},
so the only way the condition ϕ(Li) ⊆ {uk′+1, . . . , uj} could fail is if there exists a
vertex w ∈ Li such that ϕ(w) = uiw for some integer iw ≤ k′. Since ϕ maps ti−1

7

to uk′ and w 6= ti−1, we have iw < k′. Moreover, since ϕ preserves adjacencies and
wti ∈ E(Bi), we have uiwuk ∈ E(G). By Observation 1, vertex ti−1 has a neigh-
bor, say z, in Bi−1. Clearly z 6= ti; moreover, uizuk′ ∈ E(G), where uiz = ϕ(z).
Furthermore, Definition 1 implies that iz < k′. Since ϕ preserves non-adjacencies
and wti−1 6∈ E(Bi), we have uiwuk′ 6∈ E(G). Similarly, since zti 6∈ E(Bi), we
have uizuk 6∈ E(G). If iz < iw then iz < iw < k′, and we have a contradiction
to Definition 1 for the triple (i, j, k) = (iz, iw, k

′). Hence, iw < iz, and conse-
quently iw < iz < k, and we have a contradiction to Definition 1 for the triple
(i, j, k) = (iw, iz, k). This shows that ϕ(Li) ⊆ {uk′+1, . . . , uj}. We conclude that
ϕ(Li) is an independent set in the graph G′, implying α(G′) ≥ |Li|, as claimed. ut

We now show that the necessary condition in Lemma 4 is also a sufficient con-
dition for fB(i, j, k) = 1.

Lemma 5. Let B ∈ B be a representative backbone of T , and let (i, j, k) be a triple
in TB with i ≥ 2. If there exists an integer k′ ∈ {`(k), . . . , j} such that

fB(i− 1, `(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| ,

then fB(i, j, k) = 1.

Proof. Suppose that the conditions in the lemma are satisfied. By the definition
of fB , there exists an isi mapping ϕ of Bi−1 into Gk

′

`(k)−1 such that ϕ(ti−1) =

uk′ . We need to show that there exists an isi mapping ϕ′ of Bi into Gkj such
that ϕ′(ti) = uk. Let I be an independent set of size |Li| in the graph G′ =
G
[
{uk′+1, . . . , uj} \ NG(uk′)

]
. We fix a bijection ψ : Li → I, and we define a

mapping ϕ′ : V (Bi)→ V (G) as follows: for every v ∈ V (Bi), we have

ϕ′(v) =

ϕ(v) if v ∈ V (Bi−1) ;
uk if v = ti ;
ψ(v) if v ∈ Li .

Notice that since the vertex set of Bi is the disjoint union of sets V (Bi−1), {ti} and
Li, the mapping ϕ′ is well-defined. In order to complete the proof, we will verify
that ϕ′ is an isi mapping of Bi into Gkj such that ϕ′(ti) = uk. In what follows, we

will use the fact that Gk
′

`(k)−1 is an induced subgraph of Gkj .

(i) Since

ϕ′(V (Bi)) = ϕ(V (Bi−1)) ∪ {uk} ∪ ψ(Li)

⊆ V (Gk
′

`(k)−1) ∪ {uk} ∪ I
⊆ {u1, . . . , uk′} ∪ {uk} ∪ {uk′+1, . . . , uj}
= V (Gkj) ,

mapping ϕ′ is indeed a mapping from V (Bi) to V (Gkj).
(ii) Condition ϕ′(ti) = uk is satisfied by definition.

8

(iii) The injectivity of ϕ′ follows immediately from the injectivity of ϕ and the
bijectivity of ψ.

(iv) ϕ′ preserves adjacencies:
Let uv ∈ E(Bi). If u, v ∈ V (Bi−1), then

ϕ′(u)ϕ′(v) = ϕ(u)ϕ(v) ∈ E(Gk
′

`(k)−1) ⊆ E(Gkj) ,

where the fact that ϕ(u)ϕ(v) is an edge of Gk
′

`(k)−1 holds since ϕ preserves

adjacencies. If u = ti−1 and v = ti then ϕ′(u)ϕ′(v) = uk′uk, which is an edge of
Gkj since `(k) ≤ k′ ≤ j. Finally, if u = ti and v ∈ Li, then ϕ′(u)ϕ′(v) = ukψ(v),

which is an edge of Gkj , since ψ(v) = ur for some r ∈ {k′ + 1, . . . , j} ⊆
{`(k) + 1, . . . , j}, implying ur ∈ NGk

j
(uk).

(v) ϕ′ preserves non-adjacencies:
Let u, v be a pair of distinct non-adjacent vertices of Bi.
If u, v ∈ V (Bi−1), then, since ϕ preserves non-adjacencies, ϕ′ maps {u, v} to
a pair of non-adjacent vertices in Gk

′

`(k)−1, and hence in Gkj .

Suppose that u ∈ V (Bi−1) and v = ti. Then u 6= ti−1 and hence ϕ′(u) ∈
{u1, . . . , u`(k)−1}. Consequently, by the definition of `(k), vertex ϕ(u) is not

adjacent to uk = ϕ(v) in Gkj .

Suppose that u = ti−1 and v ∈ Li. Then ϕ′(u) = uk′ , and ϕ′(v) is not adjacent
to ϕ′(u) = uk′ since ϕ′(v) ∈ I ⊆ {uk′+1, . . . , uj} \NG(uk′).

Finally, suppose that u ∈ V (Bi−1) \ {ti−1} and v ∈ Li. Then ϕ′(u) = ur for
some r ∈ {1, . . . , `(k)−1}, and ϕ′(v) = us for some s ∈ {k′+1, . . . , j}. Suppose
for a contradiction that ur and us are adjacent in Gkj . Since Gkj is an induced
subgraph of G, ur and us are adjacent in G. On the other hand, the definition
of I implies that uk′ and us are non-adjacent in G. However, since r < k′ < s,
this contradicts Definition 1 applied to the triple (i, j, k) = (r, k′, s).

The above properties imply that ϕ′ is an isi mapping of Bi into Gkj such that
ϕ′(ti) = uk. Consequently fB(i, j, k) = 1, completing the proof of the lemma. ut

The results of Lemmas 3–5 can be summarized as follows.

Corollary 1. For any representative backbone B = (t1, . . . , tp) ∈ B of T , the values
of the function fB : TB → {0, 1} can be computed recursively as follows:

– for i = 1 and all 1 ≤ j < k ≤ n, we have fB(1, j, k) = 1 if and only if

α(G[{u`(k), . . . , uj}]) ≥ |L1| ;

– for all i ∈ {2, . . . , p} and all 1 ≤ j < k ≤ n, we have fB(i, j, k) = 1 if and only
if there exists an integer k′ ∈ {`(k), . . . , j} such that

fB(i− 1, `(k)− 1, k′) = 1 and α
(
G
[
{uk′+1, . . . , uj} \NG(uk′)

])
≥ |Li| .

We are now ready to prove the main result of this paper.

9

Theorem 1. Induced Subtree Isomorphism can be solved in polynomial time
on interval graphs.

Proof. Let (G,T) be an instance of Induced Subtree Isomorphism, where G =
(V,E) is an interval graph and T is a tree. We assume that T has at least three
vertices, as the problem can trivially be solved otherwise. We also assume that
|V (T)| ≤ |V (G)|, as otherwise we have a trivial no-instance. Finally, we assume that
G is connected; if G is disconnected, then the polynomial-time algorithm described
below can be applied to each of the connected components of G within the same
overall time bound.

Let t = |V (T)|, n = |V (G)| and m = |E(G)|. We start by checking whether T is
a caterpillar, which can easily be done in time linear in the size of T . As mentioned
in Section 2, every induced subtree of an interval graph is a caterpillar due to a
characterization of interval graphs by Lekkerkerker and Boland [20]. Hence, if T is
not a caterpillar, then we output “no”. Suppose T is a caterpillar. Then we compute
a set B = {Bmin, B

−1
min, B

+, B−} of at most four representative backbones of T in
the way described just below Lemma 1. It is clear that such a set B can be computed
in time O(t). We also compute an interval order σ = (u1, u2, . . . , un) of G, which
can be done in O(n + m) time [27]. Using this interval order σ, we then compute,
for all i ∈ {1, . . . , n}, the indices `(i) that were defined just above Lemma 3; this
takes O(n+m) time in total.

Lemma 2 and Corollary 1 imply that we can determine whether or not T is
isomorphic to an induced subgraph of G by computing, for each backbone B ∈ B,
the value of fB(|B|, k − 1, k) for every k ∈ {2, . . . , n}. We will now describe how
this can be done in polynomial time for a fixed backbone B ∈ B. Since B contains
at most four backbones, this suffices to complete the proof of Theorem 1.

Let B = (t1, . . . , tp) ∈ B be a representative backbone of T . For every i ∈
{1, . . . , p}, we compute the number |Li| = |NT (ti) \ V (B)|. Then, for every pair
(j, k) with 1 ≤ j < k ≤ n, we compute the independence number of the graph
G
[
{u`(k), . . . , uj}

]
. Since G

[
{u`(k), . . . , uj}

]
is an induced subgraph of G, and thus

an interval graph, its independence number can be computed in time O(n+m) [10].
Hence, computing α

(
G
[
{u`(k), . . . , uj}

])
for all pairs (j, k) takes O(n2(n+m)) time

in total. We also compute the independence number of the graph G
[
{uk′+1, . . . , uj}\

NG(uk′)
]

for every pair (k′, j) with 1 ≤ k′ ≤ j ≤ n, which can be done in
O(n2(n+m)) time in total for similar reasons.

Having precomputed these independence numbers and values of |Li|, we can
now use the recursions from Corollary 1 to compute the value of fB(i, j, k) for every
(i, j, k) ∈ TB , in increasing order of i ∈ {1, . . . , |B|}, in time O(tn3) in total: each
of the values fB(i, j, k) can be computed in constant time for i = 1 and in time
O(n) for i ≥ 2 from the already computed values. The overall time complexity of
the algorithm is O(n2(n+m)) +O(tn3) = O(n2(tn+m)).

The algorithm can be easily extended so that it also produces an isi mapping
of T into G, in case such a mapping exists. We just need to store, for each B ∈ B
and each (i, j, k) ∈ TB such that fB(i, j, k) = 1, an isi mapping ϕ of Bi into Gkj
such that ϕ(ti) = uk. The proofs of Lemmas 3 and 5 show that such mappings can
efficiently be computed in a recursive way. ut

10

4 Subtree Isomorphism on Interval Graphs

To complement our positive result on interval graphs in the previous section, we
show in this section that Subtree Isomorphism is NP-complete on interval graphs.
In fact, we prove that Subtree Isomorphism is NP-complete already on proper
interval graphs, a well-known subclass of interval graphs.

We first need to introduce some additional terminology. Let G = (V,E) be a
graph. The width of an ordering (u1, . . . , un) of V is max{|i − j| : uiuj ∈ E}. The
bandwidth of G is the minimum width of any ordering of the vertices of G. The
Bandwidth problem takes as input a graph G and an integer k, and the task is to
decide whether the bandwidth of G is at most k. An ordering (u1, . . . , un) of V is
a proper interval order of G if, for every triple (i, j, k) with 1 ≤ i < j < k ≤ n, it
holds that uiuk ∈ E implies uiuj ∈ E and ujuk ∈ E. A graph is a proper interval
graph if and only if it has a proper interval order [21].

It follows from the definition of a proper interval order that for any proper
interval graph G, the width of a proper interval order of G is exactly the bandwidth
of G. Since a proper interval order of a proper interval graph can be computed in
linear time [21], Bandwidth is solvable in linear time on proper interval graphs.
However, Bandwidth is NP-complete on trees [25], and it is from this problem
that we reduce in the proof of the following result.

Theorem 2. Subtree Isomorhism is NP-complete on proper interval graphs.

Proof. We give a reduction from Bandwidth on trees. Let T be a tree on n vertices
which, together with an integer k, constitutes an instance of Bandwidth. We con-
struct a proper interval graph G as follows: start from a simple path (v1, v2, . . . , vn),
and add edges so that vi is adjacent to vj if and only if j−i ≤ k, for all 1 ≤ i < j ≤ n.
Such a graph is called a k-path power on n vertices, and is well-known to be a proper
interval graph. We show that T is a subgraph of G if and only if T has bandwidth
at most k.

If T is a subgraph of G, then clearly the bandwidth of T is at most k, since
|j − i| ≤ k for every edge vivj in G. If the bandwidth of T is at most k, then we
can take an ordering of the vertices of T of width at most k, and add edges to make
it a k-path power on n vertices. Since no original edge of T has endpoints that are
more than k apart in the ordering, it is indeed possible to obtain a k-path power
G in this way, which means that T is a subgraph of G. The proof is completed by
observing that the problem is trivially in NP. ut

Observe that we in fact proved a stronger result than the statement of Theo-
rem 2. A tree is a spanning subtree of a graph G if it is a subtree of G and it has
the same number of vertices as G. The above proof shows that Spanning Subtree
Isomorphism is NP-complete on path powers, which form a subclass of proper
interval graphs.

5 Concluding Remarks

As a consequence of our results in this paper and previously known results, the
following boundaries are now established on subgraph problems on interval graphs.

11

The Induced Subgraph Isomorphism problem is NP-complete even if both input
graphs are connected interval graphs [2, 7], whereas it becomes polynomial-time
solvable if G is an interval graph and H is a tree. The Subgraph Isomorphism
problem is NP-complete even if G is a proper interval graph and H is a tree, but it
becomes polynomial-time solvable if G is an interval graph and H is a path.

The problem of deciding, given a graph G and an integer k, whether there ex-
ists a (not necessarily induced) path of length k in G, is NP-complete on bipartite
graphs [19]. An easy reduction from this problem, using the observation that a graph
contains a path of length k if and only if its line graph contains an induced path of
length k− 1, shows that Induced Subtree Isomorphism is NP-complete on line
graphs of bipartite graphs, a well-known subclass of perfect graphs. This contrasts
our positive result on interval graphs in the following sense. Line graphs are claw-
free, implying that every induced tree of a line graph is a path. The restricted nature
of induced subtrees of interval graphs allowed us to obtain a polynomial-time algo-
rithm for Induced Subtree Isomorphism on interval graphs. However, although
line graphs have even more restricted induced subtrees than interval graphs, this
does not imply tractability for Induced Subtree Isomorphism on line graphs.

We would also like to mention that Induced Subtree Isomorphism is trivially
solvable in polynomial time on cographs and on split graphs, since every induced
subtree of a cograph or a split graph is a caterpillar that has a backbone on at most
two vertices. By similar arguments, the problem can also be solved in polynomial
time on 3K2-free graphs, a superclass of split graphs.

We conclude with the following two questions regarding the complexity of In-
duced Subtree Isomorphism problem on two graph classes generalizing interval
graphs:

– What is the computational complexity of Induced Subtree Isomorphism on
chordal graphs, a superclass of both interval graphs and split graphs? Note that
this problem is NP-complete on perfect graphs, a superclass of chordal graphs,
due to the aforementioned NP-completeness results on bipartite graphs [9] and
on line graphs of bipartite graphs. Also note that the easier problem of finding
a longest induced path can be solved in polynomial time on chordal graphs, or
more generally, in O(nk) time on k-chordal graphs, i.e., on graphs having no
induced cycles on more than k vertices [15].

– What is the computational complexity of Induced Subtree Isomorphism on
AT-free graphs? This is a superclass of interval graphs, which also generalizes
the cocomparability graphs. AT-free graphs share many features with interval
graphs that were used by our algorithm in Section 3: they have some kind of
linear structure [6, 17], the only possible induced subtrees in an AT-free graph
are caterpillars, and computing the independence number of an AT-free graph is
a polynomially solvable task [4]. Also note that the problem of finding a longest
induced path can be solved in polynomial time on AT-free graphs [15,18].

References

1. Agarwal, R.K.: An investigation of the subgraph isomorphism problem. M.Sc. Thesis,
Dept. of Computer Science, University of Toronto, TR 138180 (1980)

12

2. Belmonte, R., Heggernes, P., van ’t Hof, P.: Edge contractions in subclasses of chordal
graphs. Discrete Appl. Math. 160:999–1010 (2012)

3. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia
(1999)

4. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal triple-
free graphs. SIAM J. Discrete Math. 12: 276–287 (1999)

5. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Discrete App. Math. 3:163–174 (1981)

6. Corneil, D.G., Olariu, S., Stewart L.: Asteroidal triple-free graphs, SIAM J. Discrete
Math. 10:399–430 (1997)

7. Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In: Pro-
ceedings WG 1991, LNCS 484, pp. 72–78. Springer (1991)

8. Diestel, R.: Graph Theory. Electronic Edition (2005)
9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of

NP-completeness. W.H. Freeman & Co. (1979)
10. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by

cliques, and maximum independent set of a chordal graph. SIAM Journal on Comput-
ing, 1:180–187 (1972)

11. Golovach, P.A., Kamiński, M., Paulusma, D., Thilikos, D.M.: Containment relations
in split graphs. Discrete Appl. Math. 160:155–163 (2012)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Second Edition.
Annals of Discrete Mathematics, Volume 57. North Holland (2004)

13. Heggernes, P., van ’t Hof, P., Meister, D., Villanger, Y.: Induced subgraph isomorphism
on proper interval and bipartite permutation graphs. Submitted.

14. Ioannidou, K., Mertzios, G.B., Nikolopoulos, S.D.: The longest path problem has a
polynomial solution on interval graphs. Algorithmica 61:320–341 (2011)

15. Ishizeki, T., Otachi, Y., Yamazaki, K.: An improved algorithm for the longest induced
path problem on k-chordal graphs. Discrete Appl. Math. 156:3057–3059 (2008)

16. Kijima, S., Otachi, Y., Saitoh, T., Uno, T.: Subgraph isomorphism in graph classes.
Discrete Math. 312:3164–3173 (2012)

17. Kratsch, D.: Domination and total domination on asteroidal triple-free graphs. Dis-
crete Appl. Math. 99: 111–123 (2000)

18. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set and longest induced path on
AT-free graphs. In: Proceedings WG 2003, LNCS 2880, pp. 309–321. Springer (2003)

19. Krishnamoorthy, M.S.: An NP-hard problem in bipartite graphs. ACM SIGACT News
7(1) 26 (1975)

20. Lekkerkerker, C.G., Boland J.C., Representation of a finite graph by a set of intervals
on the real line. Fund. Math. 51:45–64 (1962)

21. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Computers
Math. Applic. 25:15–25 (1993)

22. Matousek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for
partial k-trees. Discrete Math. 108:343–364 (1992)

23. Matula, D.W.: An algorithm for subtree identification. SIAM Rev. 10:273–274 (1968)
24. Mertzios, G.B., Corneil, D.G.: A simple polynomial algorithm for the longest path

problem on cocomparability graphs. SIAM J. Discrete Math. 26: 940–963 (2012)
25. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3

is NP-complete. SIAM J. Alg. Discr. Meth. 7:505–512 (1986)
26. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156:291–

298 (1996)
27. Olariu, S.: An optimal greedy heuristic to color interval graphs. Inform. Proc. Lett.

37:21–25 (1991)

13

