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The stars of this show
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Path Contraction

Input: Graph G, integer k.
Parameter: k.
Question: Is G k-contractible to a path?

Tree Contraction

Input: Graph G, integer k.
Parameter: k.
Question: Is G k-contractible to a tree?
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Graph modification problems

problem vd ed ea ec target

Vertex Cover X edgeless
Feedback Vertex Set X acyclic

Odd Cycle Transversal X bipartite
Chordal Deletion X chordal

Interval Completion X interval
Minimum Fill-In X chordal
Cluster Editing X X P3-free

Longest Induced Path X path

Path Contraction X path
Tree Contraction X tree
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How hard are our problems?

Theorem (Asano & Hirata, 1983)

Π-Contraction is NP-complete for the following classes Π:

planar

series parallel

outerplanar

chordal

without cycles of length at least `, for any fixed ` ≥ 3

Corollary

Tree Contraction is NP-complete.
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How hard are our problems?

Theorem (Brouwer & Veldman, 1987)

P4-Contractibility is NP-complete.

Observation

A graph G is k-contractible to a path if and only if G is
Pn−k-contractible.

Corollary

Path Contraction is NP-complete.
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How hard are our problems?

Corollary

Both Path Contraction and Tree Contraction are
NP-complete.

Both problems can be solved in 2n · nO(1) time.
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How hard are our problems?

Corollary

Both Path Contraction and Tree Contraction are
NP-complete.

Both problems can be solved in 2n · nO(1) time.

Question

Can the problems be solved in f(k) · nO(1) time?

Yes!

Pim van ’t Hof (University of Bergen) et al. Contracting graphs to paths and trees



Introduction
Contracting graphs to paths
Contracting graphs to trees

How hard are our problems, really?

Corollary

Both Path Contraction and Tree Contraction are
NP-complete.

Both problems can be solved in 2n · nO(1) time.

Question

Can the problems be solved in f(k) · nO(1) time?

Yes!
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How hard are our problems, really?

Observation

If G is k-contractible to a path or a tree, then the treewidth of G
is at most k + 1.

Corollary

Both Path Contraction and Tree Contraction can be
solved in f(k) · nO(1) time.

Also if we want the function f to be “reasonable”, i.e., f(k) = ck?

Again, yes!
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One more thing about contractions

G T

Observation

If G is k-contractible to T , then any T -witness structure satisfies:

every witness set has size ≤ k + 1;

at most k big witness sets;

at most 2k vertices contained in big witness sets.
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Contracting a graph to a path

Reduction rule:

u v
L R

≥ k + 1 ≥ k + 1

(G, k)

L R

(G/uv, k)
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Linear vertex kernel for Path Contraction

Reduction rule:
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Linear vertex kernel for Path Contraction

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.
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Linear vertex kernel for Path Contraction

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.

Proof. Suppose G is k-contractible to P`.

︸ ︷︷ ︸
k + 1

︸ ︷︷ ︸
k + 1

W1 W2 W`

Note: n ≤ `+k.

This, together with ` ≤ 4k+3, yields the result.
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Fast FPT algorithm for Path Contraction

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.

Proof. Suppose G is k-contractible to P`. Claim: ` ≤ 4k + 3.Corollary

Path Contraction can be solved in 32k+o(k) + nO(1) time.
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Contracting a graph to a path
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Contracting a graph to a tree
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Contracting a graph to a tree

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.

Theorem (Thomassé, 2009)

Feedback Vertex Set has a kernel with O(k2) vertices.

Theorem

Tree Contraction has no polynomial kernel, unless
NP ⊆ coNP/poly.

Theorem

Tree Contraction can be solved in 4.98k · nO(1) time.
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No polynomial kernel for Tree Contraction...

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.

Theorem (Thomassé, 2009)

Feedback Vertex Set has a kernel with O(k2) vertices.

Theorem

Tree Contraction has no polynomial kernel, unless
NP ⊆ coNP/poly.

Theorem

Tree Contraction can be solved in 4.98k · nO(1) time.
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...but still a fast FPT algorithm

Theorem

Path Contraction has a kernel with ≤ 5k + 3 vertices.

Theorem (Thomassé, 2009)

Feedback Vertex Set has a kernel with O(k2) vertices.

Theorem

Tree Contraction has no polynomial kernel, unless
NP ⊆ coNP/poly.

Theorem

Tree Contraction can be solved in 4.98k · nO(1) time.
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We may assume G to be 2-connected

Lemma

A graph is k-contractible to a tree if and only if each of its
2-connected components can be contracted to a tree, using at
most k edge contractions in total.
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Compatible 2-colorings

Definition

A 2-coloring of G is compatible with a T -witness structure if it
colors

each big witness set monochromatically, and

each pair of adjacent big witness sets differently.

G T
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From compatible 2-coloring to T -witness structure

G T
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From compatible 2-coloring to T -witness structure

X

G T

B

X = monochromatic component of a compatible 2-coloring ϕ

X contains at most 1 big T -witness set B

B is a connected vertex cover of G[X]
B contains all black vertices
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From compatible 2-coloring to T -witness structure

X X

G

B

Theorem (Binkele-Raible & Fernau, 2010)

Given a graph G and an integer p, a connected vertex cover of G
of size at most p can be found in 2.4882p ·nO(1) time, if one exists.
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Limiting the number of 2-colorings we have to check

Recall that

any “good” T -witness structure has at most 2k vertices in big
witness sets

compatibility of a 2-coloring depends only on the colors of the
vertices in big witness sets

Theorem (Naor, Schulman & Srinivasan, 1995)

There is a deterministic algorithm that constructs an
(n, 2k)-universal set F of size 4k+o(k) log n in linear time.

Theorem

Tree Contraction can be solved in 4.98k · nO(1) time.
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To wrap up

Bipartite Contraction

fixed-parameter tractable (Heggernes, v. ’t H., Lokshtanov & Paul)

polynomial kernel?

Interval Contraction

fixed-parameter tractable?

solvable in polynomial time on chordal graphs?

Π-Contraction

pick your favorite graph class Π, and have fun!

More contractions coming up in the next talk!
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That’s all

Dank u wel!

Danke!

Takk!

Pim van ’t Hof
http://folk.uib.no/pho042
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