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Abstract. We study P6-free graphs, i.e., graphs that do not contain an
induced path on six vertices. Our main result is a new characterization of
this graph class: a graph G is P6-free if and only if each connected induced
subgraph of G on more than one vertex contains a dominating induced
cycle on six vertices or a dominating (not necessarily induced) complete
bipartite subgraph. This characterization is minimal in the sense that
there exists an infinite family of P6-free graphs for which a smallest con-
nected dominating subgraph is a (not induced) complete bipartite graph.
Our characterization of P6-free graphs strengthens results of Liu and
Zhou, and of Liu, Peng and Zhao. Our proof has the extra advantage of
being constructive: we present an algorithm that finds such a dominating
subgraph of a connected P6-free graph in polynomial time. This enables
us to solve the Hypergraph 2-Colorability problem in polynomial
time for the class of hypergraphs with P6-free incidence graphs.

1 Introduction

All graphs in this paper are undirected, finite, and simple, i.e., without loops
and multiple edges. Furthermore, unless specifically stated otherwise, all graphs
are non-trivial, i.e., contain at least two vertices. For undefined terminology we
refer to [8]. Let G = (V,E) be a graph. For a subset U ⊆ V we denote by G[U ]
the subgraph of G induced by U . A subset S ⊆ V is called a clique if G[S] is
a complete graph. A set U ⊆ V dominates a set U ′ ⊆ V if any vertex v ∈ U ′

either lies in U or has a neighbor in U . We also say that U dominates G[U ′].
A subgraph H of G is a dominating subgraph of G if V (H) dominates G. We
write Pk, Ck,Kk to denote the path, cycle and complete graph on k vertices,
respectively.

A graph G is called H-free for some graph H if G does not contain an induced
subgraph isomorphic to H. For any family F of graphs, let Forb(F) denote the
class of graphs that are F -free for every F ∈ F . We consider the class Forb({Pt})
of graphs that do not contain an induced path on t vertices. Note that Forb({P2})
is the class of graphs without any edge and Forb({P3}) is the class of graphs all
components of which are complete graphs.
? This work has been supported by EPSRC (EP/D053633/1).
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The class of P4-free graphs (or cographs) has been studied extensively (cf. [5]).
The following characterization of Forb({P4, C4}), i.e., the class of C4-free co-
graphs, is due to Wolk [19, 20] (see also Theorem 11.3.4 in [5]).

Theorem 1 ([19, 20]). A graph G is P4-free and C4-free if and only if each
connected induced subgraph of G contains a dominating vertex.

We can slightly modify this theorem to obtain a characterization of P4-free
graphs.

Theorem 2. A graph G is P4-free if and only if each connected induced subgraph
of G contains a dominating induced C4 or a dominating vertex.

Since this theorem can be proven using similar (but much easier) arguments as
in the proof of our main result, its proof is omitted here.

The following characterization of P5-free graphs is due to Liu and Zhou [14].

Theorem 3 ([14]). A graph G is P5-free if and only if each connected induced
subgraph of G contains a dominating induced C5 or a dominating clique.

A graph G is called triangle extended complete bipartite (TECB) if it is a com-
plete bipartite graph or if it can be obtained from a complete bipartite graph
F by adding some extra vertices w1, . . . , wr and edges wiu,wiv for 1 ≤ i ≤ r to
exactly one edge uv of F (see Figure 1 for an example).

u

v

w1 w2

Fig. 1. An example of a TECB graph.

The following characterization of P6-free graphs is due to Liu, Peng and Zhao [15].

Theorem 4 ([15]). A graph G is P6-free if and only if each connected induced
subgraph of G contains a dominating induced C6 or a dominating (not necessarily
induced) TECB graph.

If we consider graphs that are not only P6-free but also triangle-free, then we
have one of the main results in [14].

Theorem 5 ([14]). A triangle-free graph G is P6-free if and only if each con-
nected induced subgraph of G contains a dominating induced C6 or a dominating
(not necessarily induced) complete bipartite graph.

A characterization of Forb({Pt}) for t ≥ 7 is given in [1]: Forb({Pt}) is the class
of graphs for which each connected induced subgraph has a dominating subgraph
of diameter at most t− 4.

2



Our results

Section 3 contains our main result.

Theorem 6. A graph G is P6-free if and only if each connected induced subgraph
of G contains a dominating induced C6 or a dominating (not necessarily induced)
complete bipartite graph. Moreover, we can find such a dominating subgraph in
polynomial time.

This theorem strengthens Theorem 4 and Theorem 5 in two different ways.
Firstly, Theorem 6 shows that we may omit the restriction “triangle-free” in
Theorem 5 and that we may replace the class of TECB graphs by its proper
subclass of complete bipartite graphs in in Theorem 4. Secondly, in contrast to
the proofs of Theorem 4 and Theorem 5, the proof of Theorem 6 is constructive:
we provide a (polynomial time) algorithm for finding the desired dominating
subgraph. Note that we cannot use some brute force approach to obtain such a
polynomial time algorithm, since a dominating complete bipartite graph might
have arbitrarily large size.

In Section 3, we also show that the characterization in Theorem 6 is minimal
in the sense that there exists an infinite family of P6-free graphs for which a
smallest connected dominating subgraph is a (not induced) complete bipartite
graph. We would like to mention that the algorithm used to prove Theorem 6
also works for an arbitrary (not necessarily P6-free) graph G: in that case the
algorithm either finds a dominating subgraph as described in Theorem 6 or
finds an induced P6 in G. Furthermore, we can easily modify our algorithm
so that it finds a dominating induced C5 or a dominating clique of a P5-free
graph in polynomial time. This yields a constructive proof of Theorem 3 and
generalizes the algorithm by Cozzens and Kelleher [7] that finds a dominating
clique of a connected graph without an induced P5 or C5. We end Section 3 by
characterizing the class of graphs for which each connected induced subgraph has
a dominating induced C6 or a dominating induced complete bipartite subgraph
(again by giving a constructive proof). This class consists of graphs that, apart
from P6, have exactly one more forbidden induced subgraph. This generalizes a
result in [2].

As an application of our main result, we consider the Hypergraph 2-
Colorability problem in Section 4. It is well-known that this problem is NP-
complete in general (cf. [10]). We prove that for the class of hypergraphs with
P6-free incidence graphs the problem becomes polynomially solvable. Moreover,
we show that for any 2-colorable hypergraph H with a P6-free incidence graph,
we can find a 2-coloring of H in polynomial time.

Section 5 contains the conclusions, discusses a number of related results in
the literature and mentions open problems.

2 Preliminaries

We use the following terminology throughout the paper for a graph G = (V, E).
We say that an order π = x1, . . . , x|V | of V is connected if Gi := G[{x1, . . . , xi}]
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is connected for i = 1, . . . , |V |. Let w ∈ V and D ⊆ V . Then NG(w) denotes
the set of neighbors of w in G. We write ND(w) := NG(w) ∩D and NG(D) :=
∪u∈DNG(u)\D. If no confusion is possible, we write N(w) (respectively N(D))
instead of NG(w) (respectively NG(D)). A vertex v′ ∈ V \D is called a D-private
neighbor (or simply private neighbor if no confusion is possible) of a vertex v ∈ D
if ND(v′) = {v}.

Let u, v be a pair of adjacent vertices in a dominating set D of a graph
G such that {u, v} dominates D. We call a dominating set D′ ⊆ D of G a
minimizer of D for uv if {u, v} ⊆ D′ and each vertex of D′\{u, v} has a D′-
private neighbor in G. We can obtain such a minimizer D′ from D in polynomial
time by repeatedly removing vertices without private neighbor from D\{u, v}.
This can be seen as follows. It is clear that D′ dominates all vertices in V (G)\D,
since we only remove a vertex from D\{u, v} if all its neighbors outside D are
dominated by remaining vertices in D. Moreover, since {u, v} dominates D, all
vertices removed from D\{u, v} are dominated by {u, v}. Note that the fact that
u and v are adjacent means that the graph G[D′] is connected. We point out that
D may have several minimizers for the same edge uv depending on the order in
which its vertices are considered.

Example. Consider the graph G and its connected dominating set D in the left-
hand side of Figure 2. All private neighbors are colored black. The set D′ in the
right-hand side is a minimizer of D for uv obtained by removing w4 from D. Note
that u does not have a D′-private neighbor but v does. Instead of removing w4

we could also have chosen to remove w2 first, since w2 does not have a D-private
neighbor. Let D1 := D\{w2}. Since w3 does not have a D1-private neighbor, we
can remove w3 from D1. The resulting set D2 := D1\{w3} is a minimizer of D
for uv in which every vertex of D2 (including u) has a D2-private neighbor.

u v w1 w2 w3 w4 u v w1 w2 w3 w4

D D
′

Fig. 2. A dominating set D and a minimizer D′ of D for uv.

3 Finding connected dominating subgraphs in P6-free
graphs

Let G be a connected P6-free graph. We say that D is a type 1 dominating set
of G if D dominates G and G[D] is an induced C6. We say that D is a type
2 dominating set of G defined by A(D) and B(D) if D dominates G and G[D]
contains a spanning complete bipartite subgraph with partition classes A(D)
and B(D).
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Theorem 7. If G is a connected P6-free graph, then we can find a type 1 or
type 2 dominating set of G in polynomial time.

Proof. Let G = (V,E) be a connected P6-free graph with connected order π =
x1, . . . , x|V |. Recall that we write Gi := G[{x1, . . . , xi}], and note that Gi is
connected and P6-free for every i. For every 2 ≤ i ≤ n we want to find a type 1
or type 2 dominating set Di of Gi. Let D2 := {x1, x2}. Suppose i ≥ 3. Assume
Di−1 is a type 1 or type 2 dominating set of Gi−1. We show how we can use
Di−1 to find Di in polynomial time. Since the total number of iterations is |V |,
we then find a desired dominating subgraph of G|V | = G in polynomial time.
We write x := xi. If x ∈ N(Di−1), then we set Di := Di−1. Suppose otherwise.
Since π is connected, Gi contains a vertex y (not in Di−1) adjacent to x.

Case 1. Di−1 is a type 1 dominating set of Gi−1.

We write G[Di−1] = c1c2c3c4c5c6c1. We claim that D := NDi−1(y) ∪ {x, y}
dominates Gi, which means that Di := D is a type 2 dominating set of Gi

defined by A(Di) := {y} and B(Di) := {x} ∪ NDi−1(y). Suppose D does not
dominate Gi, and let z ∈ V (Gi) be a vertex not dominated by D. Since Di−1

dominates Gi−1, we may without loss of generality assume that yc1 ∈ E(Gi).
Suppose yc4 ∈ E(Gi). Note that z is dominated by Gi−1. Without loss of

generality, assume z is adjacent to c2. Consequently, y is not adjacent to c2.
Since z is not adjacent to any neighbor of y and the path zc2c1yc4c5 cannot
be induced in Gi, either z or y must be adjacent to c5. If zc5 ∈ E(Gi), then
xyc4c5zc2 is an induced P6 in Gi. Hence zc5 /∈ E(Gi) and yc5 ∈ E(Gi). In case
zc6 ∈ E(Gi) we obtain an induced path xyc5c6zc2 on six vertices, and in case
zc6 /∈ E(Gi) we obtain an induced path zc2c1c6c5c4. We conclude yc4 /∈ E(Gi).

Suppose y is not adjacent to any vertex in {c3, c5}. Since Gi is P6-free and
xyc1c2c3c4 is a P6 in Gi, y must be adjacent to c2. But then xyc2c3c4c5 is an
induced P6 in Gi, a contradiction. Hence y is adjacent to at least one vertex in
{c3, c5}, say yc5 ∈ E(Gi). By symmetry (using c5, c2 instead of c1, c4) we find
yc2 /∈ E(Gi).

Suppose z is adjacent to c2. The path zc2c1yc5c4 on six vertices and the P6-
freeness of Gi imply zc4 ∈ E(Gi). But then c2zc4c5yx is an induced P6. Hence
zc2 /∈ E(Gi). Also zc4 /∈ E(Gi) as otherwise zc4c5yc1c2 would be an induced P6,
and zc3 /∈ E(Gi) as otherwise zc3c2c1yx would be an induced P6. Then z must
be adjacent to c6 yielding an induced path zc6c1c2c3c4 on six vertices. Hence we
may choose Di := D.

Case 2. Di−1 is a type 2 dominating set of Gi−1.

Since Di−1 dominates Gi−1, we may assume that y is adjacent to some vertex
a ∈ A(Di−1). Let b ∈ B(Di−1). Let D be a minimizer of Di−1 ∪{y} for ab (note
that {a, b} dominates Di−1 ∪ {y}). By definition, D dominates Gi. Also, G[D]
contains a spanning (not necessarily complete) bipartite graph with partition
classes A ⊆ A(Di−1), B ⊆ B(Di−1) ∪ {y}. Note that we have y ∈ D, because x
is not adjacent to Di−1 and therefore is a D-private neighbor of y. Since y might
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not have any neighbors in B but does have a neighbor (vertex a) in A, we chose
y ∈ B.

Claim 1. If G[D] contains an induced P4 starting in y and ending in some r ∈ A,
then we can find a type 1 or a type 2 dominating set Di of Gi in polynomial time.

We prove Claim 1 as follows. Suppose ypqr is an induced path in G[D] with r ∈
A. Since D is a minimizer of Di−1∪{y} for ab and r ∈ D\{a, b}, r has a D-private
neighbor s by definition. Since xypqrs is a path on six vertices and x /∈ N(Di−1)
holds, x must be adjacent to s. We first show that D1 := ND(y) ∪ {x, y, q, r, s}
dominates Gi. See Figure 3 for an illustration of the graph G[D1]. Suppose D1

x

y

p

q

r

s
ND(y)\{p}

Fig. 3. The graph G[D1].

does not dominate G. Then there exists a vertex z ∈ N(D)\N(D1). Note that
G[(D\{y})∪{z}] is connected because the edge ab makes D\{y} connected and
{a, b} dominates D. Let P be a shortest path in G[(D\{y}) ∪ {z}] from z to a
vertex p1 ∈ ND(y) (possibly p1 = p). Since z /∈ N(D1) and p1 ∈ D1, we have
|V (P )| ≥ 3. This means that Pyxs is an induced path on at least six vertices,
unless r ∈ V (P ) (since r is adjacent to s). However, if r ∈ V (P ), then the
subpath z

−→
P r of P from z to r has at least three vertices (because z /∈ N(D1)).

This means that z
−→
P rsxy contains an induced P6, a contradiction. Hence D1

dominates Gi.
To find a type 1 or type 2 dominating set Di of Gi, we transform D1 into Di

as follows. Suppose q has a D1-private neighbor q′. Then q′qpyxs is an induced
P6 in Gi, a contradiction. Hence q has no D1-private neighbor and the set D2 :=
D1\{q} still dominates Gi. Similarly, r has no D2-private neighbor r′, since
otherwise r′rsxyp would be an induced P6 in Gi. So the set D3 := D2\{r} also
dominates Gi. Now suppose s does not have a D3-private neighbor. Then the
set D3\{s} dominates Gi. In that case, we find a type 2 dominating set Di of
Gi defined by A(Di) := {y} and B(Di) := ND(y) ∪ {x}. Assume that s has a
D3-private neighbor s′ in Gi. Let D4 := D3 ∪ {s′}.

Suppose ND(y)\{p} contains a vertex p2 that has a D4-private neighbor p′2.
Then p′2p2yxss′ is an induced P6, contradicting the P6-freeness of Gi. Hence
we can remove all vertices of ND(y)\{p} from D4, and the resulting set D5 :=
{p, y, x, s, s′} still dominates Gi. We claim that D6 := D5 ∪ {q} is a type 1
dominating set of Gi. Clearly, D6 dominates Gi, since D5 ⊆ D6. Since qpyxss′
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is a P6 and qpyxs is induced, q must be adjacent to s′. Hence D6 is a type 1
dominating set of Gi, and we choose Di := D6. This proves Claim 1.

Let A1 := NA(y) and A2 := A\A1. Let B1 := NB(y) and B2 := B\(B1 ∪ {y}).
Since a ∈ A1, we have A1 6= ∅. If A2 = ∅, then we define a type 2 dominating
set Di of Gi by A(Di) := A and B(Di) := B. Suppose A2 6= ∅. Note |B| ≥ 2,
because {b, y} ⊆ B. If B2 = ∅, then we define Di by A(Di) := A ∪ {y} and
B(Di) := B1 = B\{y}. Suppose B2 6= ∅. If G[A1 ∪ A2] contains a spanning
complete bipartite graph with partition classes A1 and A2, we define Di by
A(Di) := A1 and B(Di) := A2 ∪B. Hence we may assume that there exist two
non-adjacent vertices a1 ∈ A1 and a2 ∈ A2. Let b∗ ∈ B2. Then ya1b

∗a2 is an
induced P4 starting in y and ending in a vertex of A. By Claim 1, we can find a
type 1 or type 2 dominating set Di of Gi in polynomial time. This finishes the
proof of Theorem 7. ut
We will now prove our main theorem.

Theorem 6. A graph G is P6-free if and only if each connected induced subgraph
of G contains a dominating induced C6 or a dominating (not necessarily induced)
complete bipartite graph. Moreover, we can find such a dominating subgraph in
polynomial time.

Proof. Let G be a graph. Suppose G is not P6-free. Then G contains an induced
P6 which contains neither a dominating induced C6 nor a dominating complete
bipartite graph. Suppose G is P6-free. Let H be a connected induced subgraph
of G. Then H is P6-free as well. We apply Theorem 7 to H. ut
The characterization in Theorem 6 is minimal due to the existence of the follow-
ing family F of P6-free graphs. For each i ≥ 2, let Fi ∈ F be the graph obtained
from a complete bipartite subgraph with partition classes Xi = {x1, . . . , xi} and
Yi = {y1, . . . , yi} by adding the edge x1x2 as well as for each h = 1, . . . , i a
new vertex x′h only adjacent to xh and a new vertex y′h only adjacent to yh (see
Figure 4 for the graph F3).

x1 x2 x3

y1 y2 y3

Fig. 4. The graph F3.

Note that each Fi is P6-free and that the smallest connected dominating sub-
graph of Fi is Fi[Xi∪Yi], which contains a spanning complete bipartite subgraph.
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Also note that none of the graphs Fi contain a dominating induced complete bi-
partite subgraph due to the edge x1x2.

We conclude this section by characterizing the class of graphs for which each
connected induced subgraph contains a dominating induced C6 or a dominating
induced complete bipartite subgraph. Again, we will show how to find these
dominating induced subgraphs in polynomial time. Let CL

3 denote the graph
obtained from the cycle c1c2c3c1 by adding three new vertices b1, b2, b3 and three
new edges c1b1, c2b2, c3b3 (see Figure 5).

c1

b1

c2

b2

c3

b3

Fig. 5. The graph CL
3 .

Theorem 8. If G is a connected graph in Forb({CL
3 , P6}), then we can find a

dominating induced C6 or a dominating induced complete bipartite subgraph of
G in polynomial time.

Proof. Let G = (V, E) be a connected graph in Forb({CL
3 , P6}) with connected

order π = x1, . . . , x|V |. Recall that we write Gi := G[{x1, . . . , xi}], and note
that Gi ∈ Forb({CL

3 , P6}) for every i. For every 2 ≤ i ≤ n we want to find a
dominating set Di of Gi that either induces a C6 or a complete bipartite subgraph
in Gi. Let D2 := {x1, x2}. Suppose i ≥ 3. Assume Di−1 induces a dominating
C6 or a dominating complete bipartite subgraph in Gi−1. We show how we can
use Di−1 to find Di in polynomial time. Since the total number of iterations is
|V |, we find a desired dominating subgraph of G|V | = G in polynomial time.
We write x := xi. If x ∈ N(Di−1), then we set Di := Di−1. Suppose otherwise.
Since π is connected, Gi contains a vertex y (not in Di−1) adjacent to x. We
first prove a useful claim.

Claim 1. If NDi−1(y) ∪ {x, y} dominates Gi, then we can find a dominating in-
duced C6 or a dominating induced complete bipartite subgraph of G in polynomial
time.

We prove Claim 1 as follows. Suppose D∗ := NDi−1(y) ∪ {x, y} dominates Gi.
We check whether G[D∗] is complete bipartite. If so, then we choose Di := D∗

and we are done. Otherwise y has a neighbor u in Di−1 with ND∗(u)\{y} 6= ∅.
If u has no D∗-private neighbor, then we remove u from D∗ and perform the
same check in the smaller set D∗\{u}. Let u′ be a D∗-private neighbor of u
in Gi. Let v ∈ ND∗(u)\{y}. Then u′ is adjacent to any D∗-private neighbor
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v′ of v, as otherwise G[{u, v, y, u′, v′, x}] is isomorphic to CL
3 . So we find that

D1 := (D∗\ND∗(u)) ∪ {y, u′} dominates Gi. If u′ does not have a D1-private
neighbor, then we remove u′ from D1, check if y is adjacent to two neighbors
in the smaller set D1\{u′} and repeat the above procedure. Let u′′ be a D1-
private neighbor of u′. Suppose ND1(y) = {x, u}. Then D1 = {x, y, u, u′}. If x
does not have a D1-private neighbor, then we choose Di := {y, u, u′}. If x has a
D1-private neighbor x′, then the P6-freeness of Gi implies that x′ is adjacent to
u′′, and we choose Di := {x′, x, y, u, u′, u′′}.

Suppose ND1(y)\{x, u} 6= ∅, say y is adjacent to some vertex t ∈ D1\{x, u}.
If t does not have a D1-private neighbor, then we remove t from D1 and check
if y is adjacent to some vertex in the smaller set D1\{x, u, t}. Let t′ be a D1-
private neighbor of t. Then the path u′′u′uytt′ is an induced P6 of Gi, unless u′′

is adjacent to t′. However, in that case xyuu′u′′t′ is an induced P6. This finishes
the proof of Claim 1.

Case 1. Di−1 induces a dominating C6 in Gi−1.

Since Di−1 is a type 1 dominating set of Gi−1, we know from the corresponding
Case 1 in the proof of Theorem 7 that D := NDi−1(y)∪{x, y} dominates Gi. By
Claim 1, we can find a dominating induced C6 or a dominating induced complete
bipartite subgraph of G in polynomial time.

Case 2. Di−1 induces a dominating complete bipartite subgraph in
Gi−1.

Let A(Di−1) and B(Di−1) denote the partition classes of Di−1. Note that both
A(Di−1) and B(Di−1) are independent sets. Since Di−1 dominates Gi−1, we may
without loss of generality assume that y is adjacent to some vertex a ∈ A(Di−1).
Let b ∈ B(Di−1). Let D be a minimizer of Di−1 ∪ {y} for ab. By definition,
D dominates Gi. Also, G[D] contains a spanning (not necessarily complete)
bipartite graph with partition classes A ⊆ A(Di−1) and B ⊆ B(Di−1) ∪ {y}.
Note that y ∈ D, because x is not adjacent to Di−1 and therefore is a D-private
neighbor of y, and consequently, y ∈ B because y is adjacent to a ∈ A (and y
might not have any neighbors in B). Let A1 := NA(y) and A2 := A\A1. Let
B1 := NB(y) and B2 := B\(B1 ∪ {y}). Since a ∈ A1, we have A1 6= ∅.

Suppose G[D] contains an induced P4 starting in y and ending in a vertex
in A. Just as in the proof of Theorem 7 we can obtain (in polynomial time)
a dominating C6 of Gi or else we find that ND(y) ∪ {x, y}, and consequently,
NDi−1(y)∪{x, y} dominates Gi. In the first case, we choose Di to be the obtained
dominating induced C6. In the second case, we can find a dominating induced C6

or a dominating induced complete bipartite subgraph of G in polynomial time
by Claim 1. So we may assume that G[D] does not contain such an induced P4.
This means that at least one of the sets A2, B2 is empty, as otherwise we find
an induced path yab2a2 for any a2 ∈ A2 and b2 ∈ B2. We may without loss of
generality assume that A2 = ∅. (Otherwise, in case B2 = ∅, we obtain B = B1,
which means that y is adjacent to b as well, so we can reverse the role of A and
B.) If B2 = ∅, then we find that A1 ∪ B1 ∪ {y} ⊂ NDi−1(y) ∪ {x, y} dominates
Gi, and we are done as a result of Claim 1. So B2 6= ∅. Let b2 ∈ B2.
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We claim that D2 := A1 ∪ B2 ∪ {x, y} dominates Gi. Suppose otherwise.
Then there exists a vertex b′1 adjacent to some vertex b1 ∈ B1 but not adjacent
to D2. Then G[{y, a, b1, x, b2, b

′
1}] is isomorphic to CL

3 , a contradiction. Hence
D2 dominates Gi. If x does not have a D2-private neighbor, then we can choose
Di := D2\{x}, since G[Di] is a complete bipartite graph with partition classes
A1 and B2 ∪ {y}. Suppose x has a D2-private neighbor x′. If b2 does not have a
D2-private neighbor, then we remove b2 from D2, and check whether B2 contains
another vertex (if not we are done, i.e., we can choose Di := A1 ∪ {x, y}, since
G[Di] is a complete bipartite graph with partition classes A1 ∪ {x} and {y}).
Suppose b2 has a D2-private neighbor b′2. Then the path x′xyab2b

′
2 is a path on

six vertices, so we must have x′b′2 ∈ E.
We claim that D3 := {x′, x, y, a, b2, b

′
2} dominates Gi. Suppose otherwise.

Then there exists a vertex c′ adjacent to some vertex c in A1 ∪ B2 but not
adjacent to a vertex in D3. Suppose c ∈ A1. Then c′cb2b

′
2x
′x is an induced P6.

Suppose c ∈ B2. Then c′cayxx′ is an induced P6. So D3 dominates Gi. Since
D3 also induces a C6 in Gi, we may choose Di := D3. This finishes the proof of
Theorem 8. ut
Theorem 9 is an immediate result of Theorem 8 together with the observation
that neither the graph P6 nor CL

3 has a dominating induced C6 or a dominating
induced complete bipartite subgraph.

Theorem 9. A graph G is in Forb({CL
3 , P6}) if and only if each connected

induced subgraph of G contains a dominating induced C6 or a dominating induced
complete bipartite graph. Moreover, we can find such a dominating subgraph in
polynomial time.

Bacsó, Michalak and Tuza [2] prove (non-constructively) that a graph G is in
Forb({CL

3 , C6, P6}) if and only if each connected induced subgraph of G contains
a dominating induced complete bipartite graph. Note that Theorem 9 immedi-
ately implies this result.

4 The Hypergraph 2-Colorability problem

A hypergraph is a pair (Q,S) consisting of a set Q = {q1, . . . , qm} and a set
S = {S1, . . . , Sn} of subsets of Q. With a hypergraph (Q,S) we associate its
incidence graph I, which is a bipartite graph with partition classes Q and S,
where for any q ∈ Q,S ∈ S we have qS ∈ E(I) if and only if q ∈ S. For any
S ∈ S, we write H − S := (Q,S\S). A 2-coloring of a hypergraph (Q,S) is a
partition (Q1, Q2) of Q such that Q1 ∩ Sj 6= ∅ and Q2 ∩ Sj 6= ∅ for 1 ≤ j ≤ n.

The Hypergraph 2-Colorability problem asks whether a given hyper-
graph has a 2-coloring. This is a well-known NP-complete problem (cf. [10]). Let
H6 denote the class of hypergraphs with P6-free incidence graphs.

Theorem 10. The Hypergraph 2-Colorability problem restricted to H6 is
polynomially solvable. Moreover, for any 2-colorable hypergraph H ∈ H6 we can
find a 2-coloring of H in polynomial time.
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Proof. Let H = (Q,S) ∈ H6, and let I be the (P6-free) incidence graph of H.
We assume that I is connected, as otherwise we just proceed component-wise.

Claim 1. We may without loss of generality assume that S does not contain two
sets Si, Sj with Si ⊆ Sj.

We prove Claim 1 as follows. Suppose Si, Sj ∈ S with Si ⊆ Sj . Note that we
can check in polynomial time whether such sets Si, Sj exist. We show that H is
2-colorable if and only if H − Sj is 2-colorable. Clearly, if H is 2-colorable then
H−Sj is 2-colorable. Suppose H−Sj is 2-colorable. Let (Q1, Q2) be a 2-coloring
of H − Sj . By definition, Si ∩ Q1 6= ∅ and Si ∩ Q2 6= ∅. Since Si ⊆ Sj , we also
have Sj ∩Q1 6= ∅ and Sj ∩Q2 6= ∅, so (Q1, Q2) is a 2-coloring of H. This proves
Claim 1.

By Theorem 6, we can find a type 1 or type 2 dominating set D of I in polynomial
time. Since I is bipartite, G[D] is bipartite. Let A and B be the partition classes
of G[D]. Since I is connected, we may without loss of generality assume A ⊆ Q
and B ⊆ S. Let A′ := Q\A and B′ := S\B. We distinguish two cases.

Case 1. D is a type 1 dominating set of I.

We write I[D] = q1S1q2S2q3S3q1, so A = {q1, q2, q3} and B = {S1, S2, S3}.
Suppose A′ = ∅, so Q = {q1, q2, q3}. Obviously, H has no 2-coloring. Suppose
A′ 6= ∅ and let q′ ∈ A′. Since D dominates I, q′ has a neighbor, say S1, in B. If
S2 and S3 both have no neighbors in A′, then q′S1q2S2q3S3 is an induced P6 in
I, a contradiction. Hence at least one of them, say S2, has a neighbor in A′.

We claim that the partition (Q1, Q2) of Q with Q1 := A′ ∪ {q1} and Q2 :=
{q2, q3} is a 2-coloring of H. We have to check that every S ∈ S has a neighbor
in both Q1 and Q2. Recall that S1 has neighbors q1 and q2 and S3 has neighbors
q1 and q3, so S1 and S3 are OK. Since S2 is adjacent to q2 and has a neighbor
in A′, S2 is also OK. It remains to check the vertices in B′. Let S ∈ B′. Since
D dominates I and I is bipartite, S has at least one neighbor in A. Suppose S
has exactly one neighbor, say q1, in A. Then Sq1S1q2S2q3 is an induced P6 in
I, a contradiction. Hence S has at least two neighbors in A. The only problem
occurs if S is adjacent to q2 and q3 but not to q1. However, since S2 is adjacent
to q2 and q3, S must have a neighbor in A′ due to Claim 1. Hence (Q1, Q2) is a
2-coloring of H.

Case 2. D is a type 2 dominating set of I.

Suppose A′ = ∅. Then |B| = 1 as a result of Claim 1. Let B = {S} and q ∈ A.
Since S is adjacent to all vertices in A, we find that B′ = ∅ as a result of Claim
1. Hence H has no 2-coloring if |A| = 1, and H has a 2-coloring ({q}, A\{q}) if
|A| ≥ 2. Suppose A′ 6= ∅. We claim that (A,A′) is a 2-coloring of H. This can
be seen as follows. By definition, each vertex in S is adjacent to a vertex in A.
Suppose |B| = 1 and let B = {S}. Since S dominates Q and A′ 6= ∅, S has at
least one neighbor in A′. Suppose |B| ≥ 2. Since every vertex in B is adjacent
to all vertices in A, every vertex in S must have a neighbor in A′ as a result of
Claim 1. ut
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5 Conclusions

The key contributions of this paper are the following. We presented a new char-
acterization of the class of P6-free graphs, which strengthens results of Liu and
Zhou [14] and Liu, Peng and Zhao [15]. We used an algorithmic technique to
prove this characterization. Our main algorithm efficiently finds for any given
connected P6-free graph a dominating subgraph that is either an induced C6

or a (not necessarily induced) complete bipartite graph. Besides these main re-
sults, we also showed that our characterization is “minimal” in the sense that
there exists an infinite family of P6-free graphs for which a smallest connected
dominating subgraph is a (not induced) complete bipartite graph. We also char-
acterized the class Forb({CL

3 , P6}) in terms of connected dominating subgraphs,
thereby generalizing a result of Bacsó, Michalak and Tuza [2].

Our main algorithm can be useful to determine the computational complex-
ity of decision problems restricted to the class of P6-free graphs. To illustrate
this, we applied this algorithm to prove that the Hypergraph 2-Colorability
problem is polynomially solvable for the class of hypergraphs with P6-free inci-
dence graphs. Are there any other decision problems for which the algorithm is
useful? In recent years, several authors studied the classical k-Colorability
problem for the class of P`-free graphs for various combinations of k and ` [13,
16, 18]. The 3-Colorability problem is proven to be polynomially solvable for
the class of P6-free graphs [16]. Hoàng et al. [13] show that for all fixed k ≥ 3
the k-Colorability problem becomes polynomially solvable for the class of
P5-free graphs. They pose the question whether there exists a polynomial time
algorithm to determine if a P6-free graph can be 4-colored. We do not know yet
if our main algorithm can be used for simplifying the proof of the result in [16]
or for solving the open problem described above. We leave these questions for
future research.

The next class to consider is the class of P7-free graphs. Recall that a graph
G is P7-free if and only if each connected induced subgraph of G contains a
dominating subgraph of diameter at most three [1]. Using an approach similar
to the one described in this paper, it is possible to find such a dominating sub-
graph in polynomial time. However, a more important question is whether this
characterization of P7-free graphs can be narrowed down. Also determining the
computational complexity of the Hypergraph 2-Colorability problem for
the class of hypergraphs with P7-free incidence graphs is still an open problem.

Finally, a natural problem for a given graph class deals with its recognition.
We are not aware of any recognition algorithms for (even bipartite or triangle-
free) P7-free graphs that have a better running time than the trivial algorithm
that checks for every 7-tuple of vertices whether they induce a path. This might
be another interesting direction for future research, considering the following
results on recognition of (subclasses of) P6-free graphs. Fouquet [9] presents
a cubic recognition algorithm for the class of P6-free graphs (in an internal
report). Giakoumakis and Vanherpe [11] show that bipartite P6-free graphs can
be recognized in linear time. They do this by extending the techniques developed
in [6] for linear time recognition of P4-free graphs (also see [12]) and by using
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a characterization of P6-free graphs in terms of canonical decomposition trees
(which is not related to our characterization) from [9]. Brandstädt, Klembt and
Mahfud [4] show that triangle-free P6-free graphs have bounded clique-width.
The recognition algorithm they obtain from this result runs in quadratic time.
Since the class of P6-free graphs has unbounded clique-width (cf. [3]), their
technique cannot be applied to find a quadratic recognition algorithm for the
class of P6-free graphs.
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