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Abstract. The Parity Path problem is to decide if a given graph con-
tains both an induced path of odd length and an induced path of even
length between two specified vertices. In the related problems Odd In-
duced Path and Even Induced Path, the goal is to determine whether
an induced path of odd, respectively even, length between two specified
vertices exists. Although all three problems are NP-complete in general,
we show that they can be solved in O(n5) time for the class of claw-free
graphs. Two vertices s and t form an even pair in G if every induced path
from s to t in G has even length. Our results imply that the problem of
deciding if two specified vertices of a claw-free graph form an even pair,
as well as the problem of deciding if a given claw-free graph has an even
pair, can be solved in O(n5) time and O(n7) time, respectively. We also
show that we can decide in O(n7) time whether a claw-free graph has
an induced cycle of given parity through a specified vertex. Finally, we
show that a shortest induced path of given parity between two specified
vertices of a claw-free perfect graph can be found in O(n7) time.

1 Introduction

Finding a shortest path, a maximum stable set or a hamiltonian cycle in a graph
are just a few examples from the wide spectrum of problems dealing with finding
a subgraph (or induced subgraph) with some particular property. In this context,
very simple subgraphs, such as paths, trees and cycles, with some prescribed
property are often studied. The following problem has been extensively studied
in the context of perfect graphs. Here, the length of a path refers to its number
of edges, and a path is said to be odd (respectively even) it has odd (respectively
even) length.
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Parity Path
Instance: A graph G and two vertices s, t of G.
Question: Does G contain both an odd induced path and an even induced path
from s to t?

We focus on the closely related problem of deciding whether there exists an
induced path of given parity between a pair of vertices. In particular, we study
the following two problems.

Odd Induced Path
Instance: A graph G and two vertices s, t of G.
Question: Does G contain an odd induced path from s to t?

Even Induced Path
Instance: A graph G and two vertices s, t of G.
Question: Does G contain an even induced path from s to t?

The Odd Induced Path problem was shown to be NP-complete by Bien-
stock [6]. Consequently, the Even Induced Path problem and the Parity
Path problem are NP-complete as well. Several authors however have identified
a number of graph classes that admit polynomial-time algorithms for these prob-
lems. Below we survey those results, as well as results on related problems, before
stating our contribution. Throughout the paper, we use n and m to denote the
number of vertices and the number of edges of the input graph, respectively.

Odd Path and Even Path. In the Odd Path and Even Path problems
the task is to find a (not necessarily induced) path of given parity between
a specified pair of vertices. These problems were considered by LaPaugh and
Papadimitriou [24]. They mention an O(n3) time algorithm for solving both
problems due to Edmonds and propose a faster one of O(m) time complexity.
Their algorithm also finds a shortest (not necessarily induced) path of given par-
ity between two vertices in O(m) time, even in a weighted graph. Interestingly,
as they also show in their paper, the problem of finding a directed path of given
parity is NP-complete for directed graphs.

Arkin, Papadimitriou and Yannakakis [1] generalized the result of [24] and
designed a linear-time algorithm deciding if all (not necessarily induced) paths
between two specified vertices are of length p mod q, for fixed integers p and q.

Even Pair. First interest in induced paths of given parity comes from the
theory of perfect graphs. Two non-adjacent vertices are called an even pair if
every induced path between them is even. The Even Pair problem is to de-
cide if a given pair of vertices forms an even pair. The Even Pair problem is
co-NP-complete due to Bienstock [6], as is the problem of deciding if a graph
contains an even pair. The interest in even pairs was sparked by an observation
of Fonlupt and Uhry [19]: if a graph is perfect and contains an even pair, then
the graph obtained by identifying the vertices that form the even pair is also
perfect. Later Meyniel showed that minimal non-perfect graphs contain no even
pair [29]. Those two facts triggered a series of theoretical and algorithmic results
which are surveyed in [16] and its updated version [17].
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There is some evidence that perfect graphs without an even pair can be
generated by performing a small number of composition operations on some
basic graphs. Using such a structural result could then lead to a combinatorial
algorithm for coloring perfect graphs. Indeed, for coloring perfect graphs using
at most three colors this approach turned out to be successful, as was shown by
Chudnovsky and Seymour [11]. Linhares Sales and Maffray [27] study even pairs
in order to give characterizations of claw-free graphs that are strict quasi-parity
and perfectly contractile, respectively.

Parity Path and Group Path. Arikati, in a series of papers with differ-
ent coauthors [2–4], developed polynomial-time algorithms for the Parity Path
problem in different classes of graphs. Chordal graphs are considered by Arikati
and Peled [2], who present a linear-time algorithm for the Group Path prob-
lem, a generalization of the Odd Induced Path problem. In the Group Path
problem the edges of the input graph are weighted with elements of some group
G. The problem is to find an induced path of given weight between two specified
vertices, where the weight of a path is defined as the product of the weights
of the edges of the path. They present an O(|G|m + n) time algorithm for the
Group Path problem on chordal graphs using a perfect elimination ordering.

Arikati, Rangan, and Manacher [4] consider Parity Path on circular-arc
graphs and show how to reduce the problem to interval graphs by recursively
applying a set of reductions. Since interval graphs are chordal, the algorithm
of [2] can be used to obtain the solution. This way they obtain a polynomial-
time algorithm for circular-arc graphs.

Satyan and Rangan [34] present polynomial-time algorithms for the Par-
ity Path problem on comparability and cocomparability graphs, and a linear-
time algorithm for permutation graphs. A polynomial-time algorithm for Parity
Path on perfectly orientable graphs is presented by Arikati and Peled [3]. Sam-
paio and Sales [33] obtain a polynomial-time algorithm for planar perfect graphs.
Figueiredo et al. [18] characterize even pairs and odd pairs in comparability and
P4-comparability graphs and give polynomial-time algorithms for the Parity
Path problem in those classes. Hoàng and Le [22] show that Parity Path can
be solved in polynomial time for the class of 2-split graphs.

Note that a set F of vertices of a line graph G = L(H) form an odd (re-
spectively even) induced path in G if and only if the set of edges corresponding
to F form an even (respectively odd) path in the preimage graph H of G. It
is well-known that the preimage graph of a line graph can be found in polyno-
mial time [31]. Combining these two facts with the polynomial-time algorithm for
finding (not necessarily induced) paths of given parity in [24] yields a polynomial-
time algorithm for solving the Parity Path problem for the class of line graphs
(cf. [37]).

Our results. Our interest in the Odd Induced Path problem was in part
stirred by studying Bienstock’s NP-completeness reduction [6]. He builds a graph
out of a 3-Sat formula and shows that the formula is satisfiable if and only if
there exists an odd induced path between a certain pair of vertices. This is also
shown to be equivalent to the existence of two disjoint induced paths (with no

3



edges between the two paths) between certain pairs of vertices in the construc-
tion. Finding such two paths is then NP-hard in general but has been proved
solvable in polynomial time for claw-free graphs [25]. A natural question to ask is
whether the Odd Induced Path problem can also be solved in polynomial time
for this class of graphs. In this paper, we answer this question in the affirmative
by presenting an algorithm that solves both the Odd Induced Path problem
and the Even Induced Path problem in O(n5) time for the class of claw-free
graphs. This implies that the Even Pair problem can be solved in O(n5) time
for claw-free graphs.

As we saw earlier in this section, the Parity Path problem has been exten-
sively studied in different graph classes. However, a polynomial-time algorithm
for claw-free graphs has never been proposed; somewhat surprising, since claw-
free graphs form a large and important class containing, e.g., the class of line
graphs and the class of complements of triangle-free graphs. Our O(n5) time
algorithm for solving the Odd Induced Path and Even Induced Path prob-
lems for claw-free graphs immediately implies that we can solve the Parity
Path problem for claw-free graphs in O(n5) time, thus generalizing the afore-
mentioned polynomial-time result on line graphs. Making use of the structure
of claw-free perfect graphs we also obtain an O(n7) time algorithm for find-
ing shortest induced paths of given parity between two specified vertices in a
claw-free perfect graph.

Apart from the Odd Induced Path problem, Bienstock [6] mentioned two
more NP-complete problems in the abstract of his paper. The first one is to decide
whether a graph has an odd hole passing through a given vertex. The second
one is to decide whether a graph has an odd induced path between every pair
of vertices. We show that our polynomial-time algorithm for the Odd Induced
Path problem implies that both these problems are solvable in O(n7) time when
restricted to the class of claw-free graphs. The same holds for the problem of
deciding whether or not a claw-free graph contains an even pair.

Paper organization. We start in Section 2 by performing a running time anal-
ysis of the algorithm for recognizing claw-free perfect graphs due to Chvátal and
Sbihi [12]. This algorithm is used as a subroutine in our algorithm presented in
Section 3, which solves both the Odd Induced Path problem and the Even
Induced Path problem in O(n5) time for the class of claw-free graphs. The key
ideas behind the algorithm in [12] will be used to obtain the results in Section 4,
where we present an O(n7) time algorithm for finding shortest induced paths of
given parity between two specified vertices in a claw-free perfect graph. Section 5
contains the conclusions and mentions some open problems.

Preliminaries. All graphs in this paper are undirected, finite, and have no
loops or multiple edges. We refer to [15] for terminology not defined below. Let
G be a graph. We refer to the vertex set and edge set of G by V (G) and E(G),
respectively. The neighborhood of a vertex v in G is the set NG(v) = {w ∈
V (G) | vw ∈ E(G)} of neighbors of v in G. The closed neighborhood of v is the
set NG[v] = NG(v) ∪ {v}. If NG[v] = V (G) for every vertex v, then G is called
complete. For any subset S ⊆ V (G), we write G[S] to denote the subgraph
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of G induced by S. The vertices of S form a clique in G if G[S] is complete.
A vertex v is called simplicial if its neighbors form a clique. For any proper
subset S ⊂ V (G), we write G − S to denote the graph G[V (G) \ S], i.e., the
graph obtained from G by removing all vertices of S and their incident edges. If
S = {v}, we write G− v instead of G−{v}. A separator S of a connected graph
G is a set of vertices of G such that G− S is not connected.

A graph is called claw-free if it has no induced subgraph isomorphic to the
claw, i.e., the four-vertex star K1,3 = ({x, a, b, c}, {xa, xb, xc}), where vertex x is
called the center of the claw. A hole is an induced cycle of length at least 4, and
an antihole is the complement of a hole. We say that a hole is odd (respectively
even) if it has an odd (respectively even) number of edges. An antihole is called
odd (respectively even) if its complement is an odd (respectively even) hole.
The length of an antihole is the number of edges in its complement. A graph is
called Berge if it does not contain an odd hole or an odd antihole. The chromatic
number of a graph is the smallest number of colors needed to color its vertices
in such a way that no two adjacent vertices receive the same color. A graph G is
perfect if for every induced subgraph H the chromatic number of H equals the
size of a largest clique in H.

We denote the path on k vertices by Pk. Let P = v1v2 . . . vp be a path with
a fixed orientation. For j ≥ i, we write vi

−→
P vj to denote the path vivi+1 . . . vj ,

and vj
−→
P vi to denote the path vjvj−1 . . . vi.

2 Recognizing claw-free perfect graphs in O(n4) time

A little over 40 years after Berge [5] conjectured that a graph is perfect if and
only if it is Berge, Chudnovsky et al. [9] confirmed his intuition by proving the
following theorem.

Theorem 1 (Strong Perfect Graph Theorem, [9]). A graph is perfect if
and only if it contains no odd hole and no odd antihole.

Shortly afterwards, Chudnovsky et al. [7] presented an O(n9) time algo-
rithm for recognizing Berge graphs. This means we can determine in O(n9) time
whether or not a graph is perfect. The main goal of this section is to show that
the problem of deciding whether or not a claw-free graph is perfect can be solved
in O(n4) time. We point out that we do not actually present a new algorithm for
recognizing claw-free perfect graphs, but merely perform a running time analy-
sis of an existing recognition algorithm due to Chvátal and Sbihi [12]. Chvátal
and Sbihi did not explicitly state the time complexity of their recognition al-
gorithm, and to the best of our knowledge no better upper bound on the time
needed to recognize claw-free perfect graphs than the aforementioned O(n9) can
be found in the literature. We will use the recognition algorithm for claw-free
perfect graphs as a subroutine in the algorithm presented in Section 3. More-
over, in Section 4 we will exploit the fascinating structure of perfect claw-free
graphs exhibited by Chvátal and Sbihi [12] in order to obtain an algorithm for
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finding shortest induced paths of given parity in such graphs. Before we present
the key ideas behind Chvátal and Sbihi’s algorithm, we need to introduce some
terminology and techniques they use in their paper.

A set X ⊆ V (G) is a clique separator of a connected graph G if X is both a
clique and a separator of G. Suppose that the graph obtained from G by deleting
X consists of k connected components with vertex sets V1, . . . , Vk. We call the
graphs G[V1 ∪X], . . . , G[Vk ∪X] the children of G produced by X. If any child
G[Vi ∪X] contains a clique separator Xi, we continue decomposing the graph G
by replacing G[Vi ∪X] by the children of G[Vi ∪X] produced by Xi. Repeating
this procedure until the graph cannot be decomposed any further yields a col-
lection C = {G1, . . . , Gp} of induced subgraphs of G without a clique separator,
called the atoms of G. We refer to the set C as a clique separator decomposition
of G. Several authors designed polynomial-time algorithms for finding a clique
separator decomposition of a graph, the fastest one being due to Tarjan [36].
We give an explicit description of Tarjan’s algorithm in Section 4, where we also
prove some properties about the obtained clique separator decomposition. These
properties are then used in the proof of the main result of that section. For now,
we only mention the following result.

Theorem 2 ([36]). For a connected graph G, Tarjan’s decomposition algorithm
finds a clique separator decomposition with at most n− 1 atoms in O(nm) time.

According to Whitesides [38], the original motivation to study clique separa-
tor decompositions is their relation to the problem of recognizing perfect graphs.

Theorem 3 ([38]). A graph is perfect if and only if all its atoms are perfect.

Chvátal and Sbihi [12] discovered that all atoms in a clique separator decom-
position of a claw-free perfect graph G belong to one of two classes of graphs,
which they called “elementary” and “peculiar”. We now give the definitions of
elementary and peculiar graphs, and show that we can determine in O(n3) time
whether a graph belongs to one of those classes.

Definition 1. A graph H is elementary if its edges can be colored with two
colors such that every induced path on three vertices has its two edges colored
differently. We call such a coloring an elementary coloring of H.

See Figure 1 for an example of an elementary graph with an elementary
coloring, where the light edges and heavy edges are colored differently. This
graph was presented as an example of an elementary graph in [28]. The authors
of [12] describe how elementary graphs can be recognized in polynomial time.
Using their arguments, it is easy to prove the time complexity in the following
lemma.

Lemma 1 ([12]). It is possible to decide in O(n3) time whether or not a graph
H is elementary. If it is, an elementary coloring of H can be found in O(n3)
time.
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Fig. 1. An elementary graph with an elementary coloring.

Proof. Let H be a graph on n vertices and m edges. We construct a graph Γ (H)
onm vertices as follows: V (Γ (H)) = E(H) and two vertices in Γ (H) are adjacent
if and only if the corresponding edges in G induce a path on three vertices. It is
clear that we can compute the graph Γ (H) in O(n3) time by checking for each
triple of vertices in V (H) whether they induce a path on three vertices in H. For
any edge uv of H, there are at most n vertices of H that are adjacent to exactly
one vertex of {u, v}, which means that the graph Γ (H) has at most nm edges.
It is easy to see that H is elementary if and only if Γ (H) is bipartite, and any
2-coloring of Γ (H) corresponds to an elementary coloring of H. Clearly, finding
a 2-coloring of a graph with m vertices and nm edges, or concluding that such
a coloring does not exist, can be done in O(m+ nm) = O(n3) time. ut

Definition 2. A graph H is peculiar if it can be obtained from a complete graph
K as follows. Partition V (K) into six mutually disjoint non-empty sets Ai, Bi,
i = 1, 2, 3. For each i = 1, 2, 3, remove at least one edge with one end-vertex
in Ai and the other end-vertex in Bi+1, where the subscript 4 is interpreted
as 1. Finally, add three new mutually disjoint non-empty complete graphs Di,
i = 1, 2, 3, and for each i = 1, 2, 3 make each vertex in Di adjacent to all vertices
in V (K) \ (Ai ∪Bi).

d1

d2d3

a1b1

a2

b2 a3

b3

Fig. 2. The smallest possible peculiar graph.
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The smallest possible peculiar graph is depicted in Figure 2. Li and Zang [26]
present a simple polynomial-time algorithm for recognizing peculiar graphs.

Lemma 2 ([26]). It is possible to decide in O(n3) time whether or not a graph
is peculiar.

It is not hard to verify that both elementary graphs and peculiar graphs
cannot contain an odd hole or an odd antihole (cf. [28]), which means they are
perfect by virtue of Theorem 1. As mentioned before, Chvátal and Sbihi [12]
proved that every atom of a clique separator decomposition of any claw-free
perfect graph is either elementary or peculiar. This means we can formulate
their main result as follows.

Theorem 4 ([12]). A claw-free graph G with no clique separator is perfect if
and only if it is either elementary or peculiar.

Using the explicit time complexities of the recognition algorithms for elemen-
tary and peculiar graphs in Lemma 1 and Lemma 2, we can determine the time
complexity of the recognition algorithm for claw-free perfect graphs by Chvátal
and Sbihi [12].

Theorem 5 ([12]). It is possible to decide in O(n4) time whether or not a
claw-free graph is perfect.

Proof. Let G be a claw-free perfect graph. To test whether or not G is perfect, we
act as follows. First we find a clique separator decomposition C = {G1, . . . , Gp}
of G, which we can do in O(nm) time by Theorem 2. Since every atom Gi ∈ C
is a claw-free graph without a clique separator, Gi is perfect if and only if Gi is
elementary or peculiar by Theorem 4. Lemma 1 and Lemma 2 together imply
that for each atom Gi we can decide in O(n3) time whether Gi is elementary,
peculiar, or neither. By Theorem 3, G is perfect if and only if every atom Gi ∈ C
is perfect. Since we only have to consider at most n − 1 atoms by Theorem 2,
this yields an overall time complexity of O(n4). ut

Corollary 1. Let G be a claw-free graph. It is possible to find an odd hole or
an odd antihole of G, or conclude that such a subgraph does not exist, in O(n5)
time.

Proof. Let G be a claw-free graph. We test whether or not G is perfect, which
we can do in O(n4) time by Theorem 5. By Theorem 1, G only contains an odd
hole or an odd antihole if G is not perfect. In that case, we remove a vertex
from G and check in O(n4) time if the obtained subgraph G′ is perfect. If so, we
restore the vertex and repeat the procedure on G, removing another vertex. If
not, we repeat the whole procedure on the smaller graph G′. By repeating this
procedure as long as possible, we find a minimal imperfect induced subgraph H
of G. (A graph is called minimal imperfect if it is not perfect, but all its proper
induced subgraphs are perfect.) By Theorem 1, H is an odd hole or an odd
antihole of G. The O(n5) overall time complexity follows from the fact that we
have to apply the O(n4) time recognition algorithm for claw-free perfect graphs
O(n) times. ut
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3 Finding induced paths of given parity

In this section we present an algorithm that solves the Odd Induced Path
problem in O(n5) time for claw-free graphs. We show that, apart from solving
the decision problem, it is also possible to find an odd induced path between two
given vertices of a claw-free graph, or conclude that such a path does not exist,
in O(n5) time. Here is an outline of our algorithm.

Algorithm solving Odd Induced Path for claw-free graphs

Input : a claw-free graph G, and vertices s and t of G
Output : YES if G contains an odd induced path from s to t

NO otherwise

Preprocess G to obtain graph G′′
Step 1: add edges to make s and t simplicial
Step 2: delete irrelevant vertices

Test whether or not G′′ is perfect
If G′′ is not perfect, output YES
If G′′ is perfect, find a shortest path P from s to t

If P is odd, output YES
If P is even, define graph G∗ := (V (G′′) ∪ {x}, E(G′′) ∪ {sx, tx})
Test whether or not G∗ is perfect

If G∗ is not perfect, output YES
If G∗ is perfect, output NO

As shown in the outline, we first preprocess the input graph G in order to
obtain a new graph G′′ with certain desirable properties. This preprocessing
procedure is described in Section 3.1. We then distinguish two cases, depending
on whether or not G′′ is perfect. The case that G′′ is not perfect is discussed in
Section 3.2, while Section 3.3 deals with the case thatG′′ is perfect. In Section 3.4
we prove correctness of our algorithm and show that its time complexity isO(n5).
We also explain in Section 3.4 how our algorithm can be slightly modified in such
a way that it also solves the Even Induced Path problem for claw-free graphs
in O(n5) time.

3.1 Preprocessing the input graph G

Let G be a claw-free graph and let s and t be two vertices of G. Note that we
may without loss of generality assume that G is connected and that s and t are
not adjacent. We make these assumptions throughout the paper.

Step 1. We add an edge between each pair of non-adjacent neighbors of s, and
we do the same for each pair of non-adjacent neighbors of t. Then in the resulting
graph G′, both s and t are simplicial vertices. In general, adding edges is not a
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claw-freeness preserving operation. However, the following lemma states that we
do not create claws in Step 1.

Lemma 3. The graph G′ is claw-free.

Proof. Suppose, for contradiction, that G′ contains an induced subgraph isomor-
phic to a claw. Let K := {x, a, b, c} be a set of vertices of G′ inducing a claw
with center x. Note that the fact that s is simplicial implies x 6= s. Since G is
claw-free, we may without loss of generality assume that at least two vertices of
K must be in NG′ [s]. Since NG′ [s] is a clique in G′ and {a, b, c} is an independent
set of G′, we may without loss of generality assume that K ∩ NG′ [s] = {x, a}
and {b, c} ⊆ V (G′) \NG′ [s]. Then {x, b, c, s} induces a claw in G with center x,
contradicting the claw-freeness of G. ut

Step 2. We “clean” G′ by repeatedly deleting irrelevant vertices. A vertex
v ∈ V (G′) is called irrelevant (for vertices s and t) if v does not lie on any
induced path from s to t, and we say that G′ is clean (for s and t) if none of
its vertices is irrelevant. Let G′′ denote the graph obtained from G′ by repeat-
edly deleting vertices that are irrelevant. Note that G′′ is claw-free, as G′′ is an
induced subgraph of G′.

We now show that we can perform Step 2 in polynomial time by showing that
we can identify irrelevant vertices in polynomial time. In general, the problem
of deciding whether a vertex is irrelevant is NP-complete. This follows from a
result by Derhy and Picouleau [14], who prove that the following problem is
NP-complete for the class of graphs of maximum degree at most 3.

Three-in-a-Path
Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced path of G containing v1, v2 and v3?

Chudnovsky and Seymour [10] study the following closely related problem.

Three-in-a-Tree
Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced tree of G containing v1, v2 and v3?

Theorem 6 ([10]). The Three-in-a-Tree problem can be solved in O(n4)
time, and a desired tree can be found in O(n4) time in case one exists.

Observe that the Three-in-a-Path problem is equivalent to the Three-in-
a-Tree problem for the class of claw-free graphs, since every induced tree in a
claw-free graph is an induced path. Hence, using Theorem 6, we can prove the
following result.

Lemma 4. The problem of deciding whether a vertex v of a claw-free graph G
is irrelevant for two simplicial vertices s and t of G can be solved in O(n4) time.
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Proof. We claim that there exists an induced path in G from s to t containing v
if and only if G together with s, t, v is a Yes-instance of the Three-in-a-Tree
problem. By Theorem 6, this proves that we can decide in O(n4) time if v is
irrelevant.

If there exists a path in G from s to t containing v, then that path is an
induced tree containing all three vertices. Now suppose that there exists an
induced subgraph T of G which is a tree containing s, t and v. Recall that
any induced subgraph of a claw-free graph which is a tree is in fact an induced
path. Since vertices s and t are simplicial, any induced path containing s and t
contains exactly one neighbor of s and one neighbor of t. Hence s and t must be
the endpoints of the path T . ut

After preprocessing the input graph G we have obtained a graph G′′ that
satisfies the following three conditions:

(1) G′′ is claw-free;
(2) both s and t are simplicial vertices of G′′;
(3) G′′ is clean for s and t.

The following lemma implies that solving the Odd Induced Path problem
for G is equivalent to solving the problem for G′′. The lemma also shows that
the entire preprocessing procedure can be performed in O(n5) time.

Lemma 5. Every induced path from s to t in G′′ is also an induced path from
s to t in G, and vice versa. Moreover, G′′ can be obtained from G in O(n5)
time. ut

Proof. It is clear that by adding edges in Step 1 no new induced path from s
to t is created. Since any induced path from s to t in G contains exactly one
vertex of NG(s) and exactly one vertex of NG(t), the graph G′ obtained after
Step 1 contains all induced paths from s to t that were contained in G. In Step
2, we only remove vertices that do not lie on any induced path from s to t. This
implies that every induced path from s to t in G′′ is also an induced path from
s to t in G, and vice versa. It is clear that we can perform Step 1 in O(n2) time.
In Step 2, we have to check for O(n) vertices whether or not they are irrelevant.
Since we can do this in O(n4) time per vertex by Lemma 4, we can perform Step
2, and consequently the entire preprocessing procedure, in O(n5) time. ut

We now distinguish two cases, depending on whether or not G′′ is perfect.

3.2 G′′ is not perfect

Suppose G′′ is not perfect. Then G′′ contains an odd hole or an odd antihole
by virtue of the Strong Perfect Graph Theorem. We consider odd antiholes and
odd holes in Lemma 6 and Lemma 7, respectively.

Lemma 6. Let H be a connected claw-free graph. If H contains a simplicial
vertex, then H does not contain an odd antihole of length more than 5.
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Proof. Let s be a simplicial vertex of a connected claw-free graph H. For contra-
diction, suppose H contains an odd antihole X such that X = x1x2 . . . x2k+1x1

is an odd induced cycle with k ≥ 3. Vertex s does not belong to X, since s is
simplicial. Let P be an induced path from s to a vertex of X such that |V (P )|
is minimum. Note that such a path P exists since H is connected. Without loss
of generality assume that V (P ) ∩ V (X) = {x1}.

Let s′ be the neighbor of x1 on P . We claim that s′ is adjacent to at most
one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k. If s′ = s, this claim immediately follows
from the assumption that s is simplicial and the fact that xi and xi+1 are not
adjacent. Suppose s′ 6= s, and let s′′ be the neighbor of s′ on P not equal to
x1. Note that s′′ is not adjacent to any vertex of X due to the minimality of
|V (P )|. Vertex s′ cannot be adjacent to both xi and xi+1, since then the set
{s′, s′′, xi, xi+1} induces a claw in H with center s′. Hence s′ is adjacent to at
most one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k.

x1

x2

x3

x4

x5

x6
x7

s
′

s
′′

s

Fig. 3. A claw induced by {x6, s
′, x2, x3} with center x6.

Note that vertex s′ is adjacent to at least one vertex of {xi, xi+1} for 3 ≤ i ≤
2k − 1, as otherwise {x1, s

′, xi, xi+1} induces a claw in H with center x1. This,
together with the fact that s′ is adjacent to at most one vertex of {xi, xi+1}
for 1 ≤ i ≤ 2k, implies that s′ is adjacent to exactly one vertex of {x3, x2k}.
Without loss of generality, assume that s′ is adjacent to x2k and not to x3. Since
s′ is adjacent to x1 and s′ is adjacent to at most one vertex of {xi, xi+1} for
1 ≤ i ≤ 2k, s′ is not adjacent to x2. Note that x3 is adjacent to x2k, since k ≥ 3.
But then {x2k, s

′, x2, x3} induces a claw in H with center x2k; see Figure 3 for
an illustration of the case where k = 3. This contradiction finishes the proof of
Lemma 6. ut

We point out that the arguments in the proof of Lemma 6 can also be used
to prove that every odd antihole X of length more than 5 in a connected claw-
free graph H is dominating, i.e., every vertex of H either belongs to X or has a
neighbor in X.
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Lemma 7. Let H be a connected claw-free graph that is clean for two simplicial
vertices s and t. If H contains an odd hole, then there exists both an odd and an
even induced path from s to t.

Proof. Let C be an odd hole of H. Let P be an induced path from s to a vertex
p of C and let Q be an induced path from t to a vertex q of C, such that there
is no edge in H connecting a vertex in V (P ) \ {p} to a vertex in V (Q) \ {q}
and such that |V (P )|+ |V (Q)| is minimum. Note that such paths P and Q exist
since H is clean and connected. Let s′ be the neighbor of p on P , and let t′ be
the neighbor of q on Q; we note that possibly s′ = s and t′ = t.

Claim 1. Both s′ and t′ are adjacent to exactly two adjacent vertices of C.

Suppose p is the only vertex of C that is adjacent to s′. Let p− (respectively
p+) denote the neighbor of p on C when we traverse C in counter-clockwise
(respectively clockwise) order. The set {p, p−, p+, s′} induces a claw in H with
center p, contradicting the claw-freeness of H. Hence s′ must be adjacent to at
least one vertex of {p−, p+}. Suppose there exists a set D ⊆ V (C) such that
|D| ≥ 3 and s′ is adjacent to every vertex in D. Since C is an induced cycle,
we know that D contains two vertices d1 and d2 that are not adjacent. Since s
is simplicial and therefore does not have two non-adjacent neighbors, we must
have s′ 6= s. Let s′′ 6= p be a neighbor of s′ on P ; possibly s′′ = s. Vertex s′′
is not adjacent to any vertex of C due to the minimality of |V (P )| + |V (Q)|,
which means the set {s′, d1, d2, s

′′} induces a claw in H with center s′. This
contradiction finishes the proof of Claim 1 for vertex s′. By symmetry the claim
also holds for vertex t′.

We assume, without loss of generality, that NH(s′) ∩ V (C) = {p, p+} and
NH(t′) ∩ V (C) = {q, q+}. We distinguish three cases.

Suppose |{p, p+} ∩ {q, q+}| = 0. Since C is an odd hole, the induced path
s′p+−→C qt′ and the induced path s′p

←−
C q+t′ have different parity. Since by defini-

tion there is no edge connecting a vertex in V (P )\{p} to a vertex in V (Q)\{q},
this means there exists both an odd and an even induced path from s to t in H;
see Figure 4 for an illustration.

s s′
s′′

tt′
t′′

p
p+ q

q+

s s′
s′′

tt′
t′′

p
p+ q

q+

Fig. 4. Two induced paths from s to t of different parity.

Suppose |{p, p+} ∩ {q, q+}| = 1. Without loss of generality, suppose p+ = q.
Then the path s′qt′ is an even induced path from s′ to t′, and the path s′p

←−
C q+t′ is
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an odd induced path from s′ to t′. Since by definition there is no edge connecting
a vertex in V (P ) \ {p} to a vertex in V (Q) \ {q}, this means there exists both
an odd and an even induced path from s to t in H.

Suppose |{p, p+} ∩ {q, q+}| = 2. By Claim 1, neither s′ nor t′ is adjacent to
p−. Since s′ and t′ are not adjacent by the choice of P and Q, the set {p, p−, s′, t′}
induces a claw in H with center p. This contradiction finishes the proof. ut

Recall that G′′ is not perfect and has two simplicial vertices s and t. This,
together with Lemma 6 and Lemma 7, implies that G′′ contains both an odd
and an even induced path from s to t. We now show that we can also find such
paths in O(n5) time.

Lemma 8. If G′′ is not perfect, then it is possible to find both an odd and an
even induced path from s to t in G′′ in O(n5) time.

Proof. Since G′′ has two simplicial vertices s and t, G′′ does not contain an odd
antihole of length more than 5 by Lemma 6. Since an odd antihole of length
5 is also an odd hole of length 5, G′′ contains an odd hole by virtue of the
Strong Perfect Graph Theorem. We can find such a hole C in O(n5) time by
Corollary 1. Let c be any vertex of C, and let P be an induced path in G′′ from
s to t containing c. Note that such a path P exists since G′′ is clean for s and t.
We can find P in O(n4) time as a result Theorem 6. It is clear from the proof
of Lemma 7 that we can use P to find both an odd and an even induced path
from s to t in G′′. ut

3.3 G′′ is perfect

Suppose G′′ is perfect. In the concluding remarks of their paper, Corneil and
Fonlupt [13] pointed out that a polynomial-time recognition algorithm for per-
fect graphs implies a polynomial-time algorithm for the Parity Path problem
for the class of perfect graphs. The arguments they used to prove this implica-
tion were also mentioned by Hsu [23]. Using their arguments, we can prove the
following lemma.

Lemma 9. If G′′ is perfect, then it is possible to find an odd induced path from
s to t in G′′, or conclude that such a path does not exist, in O(n5) time.

Proof. Let P be a shortest path from s to t in G′′. If P has odd length, then
we are done. Suppose P has even length. Let G∗ be the graph obtained from G
by adding a vertex x and edges sx and tx. Note that the graph G∗ is claw-free,
since s and t are simplicial vertices of G′′. We determine whether or not G∗ is
perfect, which we can do in O(n4) time by Theorem 5. If G∗ is perfect, then
G∗ does not contain an odd hole or an odd antihole by virtue of Theorem 1.
This means that all induced paths from s to t must be even, so we conclude that
there does not exist an odd induced path from s to t. Suppose G∗ is not perfect.
Then G∗ must contain an odd hole or an odd antihole, and vertex x must be
in this odd hole or odd antihole since G is perfect. Since x has degree two, G∗
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cannot contain an odd antihole. Hence G∗ contains an odd hole. We can find an
odd hole C of G∗ in O(n5) time by Corollary 1. The graph obtained from C by
removing vertex x is an odd induced path from s to t in G′′. ut

3.4 Finding induced paths of given parity from s to t in G

We are now ready to prove the main result of this section.

Theorem 7. The Odd Induced Path problem and the Even Induced Path
problem can each be solved in O(n5) time for the class of claw-free graphs. More-
over, an induced path from s to t of given parity can be found in O(n5) time, if
one exists.

Proof. Let G be a claw-free graph, and let s and t be two vertices of G. Recall
that we may without loss of generality assume that G is connected and that s and
t are not adjacent. We preprocess G in O(n5) time as described in Section 3.1,
thus obtaining a graph G′′. Recall that G′′ is claw-free, that s and t are simplicial
vertices in G′′, and that G′′ is clean for s and t. We test whether or not G′′ is
perfect, which we can do in O(n4) time by Theorem 5. Below we show that we
can find an induced path of given parity from s to t in G′′, or conclude that such
a path does not exist, in O(n5) time. Lemma 5 implies that this suffices to prove
Theorem 7.

If G′′ is not perfect, then we can find both an odd and an even induced path
from s to t in G′′ in O(n5) time by Lemma 8. If G′′ is perfect, then we can find
an odd induced path from s to t in G′′, or conclude that such a path does not
exist, in O(n5) time by Lemma 9. In order to find an even induced path from s
to t, we define the graph G∗ as the graph obtained from G′′ by adding the edge
st. It is easy to verify that adding the edge st creates neither a claw nor an odd
antihole. Hence the arguments used in the proof of Lemma 9 can also be used to
find an even induced path from s to t in G′′, or conclude that such a path does
not exist, in O(n5) time. ut

Theorem 7 immediately implies the following.

Corollary 2. Both the Parity Path problem and the Even Pair problem can
be solved in O(n5) time for the class of claw-free graphs.

Bienstock [6] proved that it is NP-complete to decide if a graph contains
an odd induced path between every pair of vertices. The following corollary of
Theorem 7 implies that this problem can be solved in polynomial time when
restricted to the class of claw-free graphs.

Corollary 3. Deciding whether or not a claw-free graph has an even pair can
be done in O(n7) time.

Proof. Let G be a claw-free graph. For each pair s, t of vertices of G, we can
check in O(n5) whether or not they form an even pair by Corollary 2. Hence we
can decide whether or not G has an even pair by performing this check O(n2)
times, each time with a different pair of vertices of G in the input. ut
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Another problem Bienstock [6] proved to be NP-complete is the problem of
deciding whether a graph contains an odd hole passing through a prescribed
vertex. The following corollary, which clearly also holds in case we are looking
for an even hole, shows that this problem becomes polynomially solvable when
restricted to claw-free graphs.

Corollary 4. It is possible to find an odd hole passing through a prescribed
vertex of a claw-free graph, or conclude that such a hole does not exist, in O(n7)
time.

Proof. Let G be a claw-free graph and let v be a vertex of G. We can find an
odd hole of G passing through v, or conclude that such a hole does not exist,
as follows. For each pair s, t of non-adjacent neighbors of v, let Gs,t denote the
(claw-free) graph obtained from G by removing v and all its neighbors, apart
from s and t, from G. Clearly, G contains an odd hole through v if and only if
the graph Gs,t contains an odd induced path from s to t for some pair of non-
adjacent neighbors s, t of v. We can find such a path, or conclude that such a
path does not exist, in O(n5) time by Theorem 7. The time complexity of O(n7)
follows from the fact that we have to perform our O(n5) algorithm for O(n2)
pairs of non-adjacent neighbors of v. ut

4 Finding shortest induced paths of given parity

In this section we show that it is possible to find a shortest induced path of given
parity between two specified vertices of a claw-free perfect graph in polynomial
time, in case such a path exists. More specifically, we show that we can solve the
following two problems in O(n7) time for the class of claw-free perfect graphs.

Shortest Odd Induced Path
Instance: A graph G and two vertices s, t of G.
Task: Find a shortest odd induced path from s to t in G, or conclude that such
a path does not exist.

Shortest Even Induced Path
Instance: A graph G and two vertices s, t of G.
Task: Find a shortest even induced path from s to t in G, or conclude that such
a path does not exist.

Note that a shortest odd induced path between vertices s and t of a graph
G is not necessarily a shortest odd path between s and t in G. For example, the
shortest odd induced path from s to t in the graph in Figure 5 has length 5,
whereas the shortest odd path from s to t has length 3.

Unlike the results in the previous section, we do not rely on the recognition
algorithm for claw-free perfect graphs that was described in Section 2 to prove
the main result of this section. Instead, we make use of the structural properties
of claw-free perfect graphs that were presented by Chvátal and Sbihi in [12].
Recall that they showed that a claw-free perfect graph with no clique separator is
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s t

Fig. 5. Shortest odd path from s to t is not shortest odd induced path.

either elementary or peculiar (see Theorem 4). We first show in Section 4.1 that
both the Shortest Odd Induced Path problem and the Shortest Even
Induced Path problem can be solved in O(n4) time for elementary graphs,
and in O(n3) time for peculiar graphs. In Section 4.2 we then present in detail
Tarjan’s clique separator decomposition algorithm that was already mentioned
in Section 2. Finally, we prove in Section 4.3 that the Shortest Odd Induced
Path and Shortest Even Induced Path problems can be solved in O(n7)
time for the class of claw-free perfect graphs.

4.1 Shortest induced paths in elementary and peculiar graphs

Let us start by showing how to find shortest induced paths of given parity in
elementary graphs. Recall that a graph is elementary if and only if its edges can
be colored with two colors such that every induced P3 has both its edges colored
differently.

Lemma 10. Both the Shortest Odd Induced Path problem and the Short-
est Even Induced Path problem can be solved in O(n4) time for the class of
elementary graphs.

Proof. Let H be an elementary graph, and let u and v be two vertices of H.
Note that we may assume, without loss of generality, that H is connected and
that u and v are not adjacent. Suppose u and v have a common neighbor w. The
even induced path uwv is the only induced path from u to v that contains w;
in particular, w cannot lie on an odd induced path from u to v. Hence we may
assume that u and v do not have a common neighbor.

We observe that any induced path from u to v in H contains exactly one
vertex from NH(u) and exactly one vertex from NH(v). We also observe that in
any elementary coloring ofH, any two consecutive edges of any induced path will
be colored differently. Hence if there exists an odd (respectively even) induced
path from u to v, then the first and the last edge of that path have the same color
(respectively different colors). Using these observations, we can find a shortest
odd induced path from u to v in H as follows.

We first find an elementary coloring ϕ : E(H) → {0, 1} of H; we can find
such a coloring ϕ in O(n3) time by Lemma 1. For every pair u′ ∈ NH(u) and
v′ ∈ NH(v) with ϕ(uu′) = ϕ(vv′), we define Hu′v′ to be the graph obtained from
H by deleting the set (NH [u]∪NH [v]) \ {u′, v′}. Note that Hu′v′ is well-defined,
since u and v are not adjacent and have no common neighbors. We either find

17



a shortest path P ′ from u′ to v′ in Hu′v′ , or conclude that such a path does
not exist. It is well-known that we can do this in O(n2) time. If there exists
a shortest path P ′ from u′ to v′, then this path P ′ is clearly an induced path
in Hu′v′ . We add the vertices u and v as well as the edges uu′ and vv′ to P ′,
which yields an induced path P from u to v in H. Since P is induced and ϕ is an
elementary coloring, the colors 0 and 1 alternate on P . Then P is an odd induced
path from u to v in H, since ϕ(uu′) = ϕ(vv′). By performing this procedure for
all pairs u′, v′ with ϕ(uu′) = ϕ(vv′), we either find a shortest odd induced path
from u to v in H, or conclude that such a path does not exist. It is clear that
the procedure can be executed in O(n4) time.

To solve Shortest Even Induced Path, we perform the above procedure
for all pairs u′, v′ with ϕ(uu′) 6= ϕ(vv′) instead of ϕ(uu′) = ϕ(vv′). ut

It is clear from Definition 2 that the vertex set of every peculiar graph can be
partitioned into nine disjoint cliques. Since every induced path contains at most
two vertices of any clique, this immediately implies that every peculiar graph is
P19-free. A more careful analysis of the definition of a peculiar graph yields the
following result.

Lemma 11. Every peculiar graph is P6-free but not P5-free.

Proof. Let H be a peculiar graph, and let Ai, Bi, Di (i = 1, 2, 3) be a partition of
V (H) as mentioned in Definition 2. The set V (H) can be partitioned into three
cliques, namely X1 := A2∪B1∪B2∪D3, X2 := D1 and X3 := A1∪A3∪B3∪D2.
This immediately implies that H is P7-free, as any induced path in H contains at
most two vertices of any clique. The P6-freeness ofH follows from the observation
that for every pair x, y ∈ X2 we have NH [x] = NH [y], which implies that any
induced path in H containing vertices of X1 ∪X3 can only contain at most one
vertex from X2.

Let a2 ∈ A2 and b3 ∈ B3 be a pair of non-adjacent vertices of H; note that
such a pair exists by Definition 2. Since none of the sets D1, D2, D3 is empty,
H contains an induced path d3a2d1b3d2, where di ∈ Di, i = 1, 2, 3 (see also
Figure 2). ut

The observation that any induced path from s to t in a P6-free graph H
contains at most three other vertices of H immediately implies the following
result.

Lemma 12. Both the Shortest Odd Induced Path problem and the Short-
est Even Induced Path problem can be solved in O(n3) time for the class of
P6-free graphs.

Lemma 11 and Lemma 12 together immediately yield the following.

Corollary 5. Both the Shortest Odd Induced Path problem and the Short-
est Even Induced Path problem can be solved in O(n3) time for the class of
peculiar graphs.
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4.2 A closer look at Tarjan’s decomposition algorithm

We now take a closer look at Tarjan’s [36] decomposition algorithm, mentioned
in Section 2. Tarjan’s algorithm runs in O(mn) time and produces a clique
separator decomposition of a graph with at most n−1 atoms; see also Theorem 2.
We prove some properties of the clique separator decomposition obtained by this
algorithm, and use those properties in the proof of Theorem 8 in Section 4.3. We
first introduce some additional terminology and describe an algorithm, called
the Elimination Game, which is used as a subroutine in Tarjan’s decomposition
algorithm. The Elimination Game was first described by Parter [30] in 1961.

A graph is chordal if it does not contain an induced cycle of length at least 4.
If a graph G is a subgraph of a chordal graph H, then H is called a triangulation
of G. A triangulation H of a graph G is called minimal if none of the proper
subgraphs of H is a triangulation of G.

Consider the following algorithm, known as the Elimination Game: given a
graph G and an ordering π = v1, . . . , v|V (G)| of the vertices of G, repeatedly
choose a vertex vi with the lowest index, add edges in order to make the neigh-
borhood of vi into a clique, and remove vi from the graph. The output G+

π of
the Elimination Game is a triangulation of the input graph G, and the set Fπ
of edges that are added during the Elimination Game are called fill edges. Note
that G+

π = (V (G), E(G) ∪ Fπ).
The total number of fill edges depends on the order π in which the vertices are

considered. If the number of fill edges is 0, then the order in which the vertices
were considered is called a perfect elimination ordering of G. It is well-known
that a graph has a perfect elimination ordering if and only if it is chordal [20].
An ordering π is called a minimal elimination ordering if G+

π is a minimal tri-
angulation of G. A minimal elimination ordering and a minimal triangulation of
a graph can be found in O(mn) time, for example using an algorithm by Rose,
Tarjan and Lueker [32].

Tarjan’s clique separator decomposition algorithm takes as input a connected
graph G, and starts by finding a minimal elimination ordering π of the vertices
of G. The algorithm then calculates G+

π by running the Elimination Game on G
and π. For each vertex v of G, the algorithm then computes X(v) := {w | π(v) >
π(w) and vw ∈ E(G) ∪ Fπ}, i.e., the set of neighbors of v in the graph G+

π that
appear after v in the ordering π, where π is interpreted as a bijection from V (G)
to {1, . . . , |V (G)|}. The algorithm repeats the following decomposition step for
each vertex v in increasing order with respect to π.

Decomposition Step. Let A be the vertex set of the connected component of
G−X(v) containing v, and let B := V (G)− (X(v)∪A). If X(v) is a clique of G
and B 6= ∅, then decompose G into GA := G[A∪X(v)] and GB := G[B ∪X(v)],
and replace G by GB .

If the set X(v) in a decomposition step satisfies both conditions, i.e., X(v) is
a clique of G and B 6= ∅, then X(v) is a clique separator, and the decomposition
step is called successful. We observe the following. Firstly, G is only decomposed
into GA and GB in successful decomposition steps. Secondly, because the num-
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ber of vertices of G decreases in every successful decomposition step due to the
operation that replaces G by GB , a clique separator found in a successful decom-
position step is a clique separator of a subgraph of G. However, it is not hard
to see that every such clique separator is also a clique separator of the original
input graph G; we refer to Gavril [21] for an explicit proof of this statement.

When Tarjan’s algorithm is run on a graph G that is clean for two vertices
s and t, then we can prove another property of a clique separator found in a
successful decomposition step.

Lemma 13. Let X be a clique separator of a graph G that is clean for two
vertices s and t. Then G−X consists of exactly two connected components, one
containing s and the other containing t.

Proof. By definition, G − X has at least two connected components. We first
show that s and t cannot belong to the same connected component. Suppose, for
contradiction, that s and t belong to the same connected component D of G−X.
Let D′ be another connected component of G−X, and let d′ ∈ D′. Because G
is clean for s and t, there exists an induced path P from s to t containing d′.
Because X is a clique separator of G and D′ 6= D, both the path s

−→
P d′ and

the path d′
−→
P t must contain a vertex of X. However, then P is not an induced

path, because X is a clique. This contradiction shows that d′ is not contained
in any induced path from s to t. By definition, this means that d′ is irrelevant,
contradicting the assumption that G is clean. Hence s and t must belong to two
different connected components D1 and D2 of G−X, respectively.

Now suppose G − X has another connected component D3, and let d be a
vertex of D3. Since s, t and d are contained in three different connected compo-
nents of G−X and X is a clique of G, there exists no induced path from s to t
containing d. This means that d is irrelevant, contradicting the assumption that
G is clean. We conclude that G −X consists of exactly two connected compo-
nents, one containing s and the other containing t. ut

Tarjan [36] showed that in every successful decomposition step the graph GA
is an atom of the input graph G. We say that the corresponding clique separator
created GA. The graph GB in the last successful decomposition step is an atom
of G. Hence, in this case, the corresponding clique separator created two atoms.
Summarizing, in every successful decomposition step, a new atom of G is created,
and in the last successful decomposition step, two new atoms of G are created.

We now describe a procedure that allows us to define an ordering of the
atoms of a graph that is clean for a certain pair of vertices.

Let G be a graph that is clean for two vertices s and t. Let GA be an atom of
G created by a clique separator X(v) found in a successful decomposition step.
We define Gi := GA, where the index i is determined as follows. First of all, we
may assume that i ∈ {1, . . . , n − 1}, because G has at most n − 1 atoms due
to Theorem 2. Now, by Lemma 13, G − X(v) contains exactly two connected
components D1 and D2, where s ∈ V (D1) and t ∈ V (D2). Note that v /∈ X(v),
which means that v belongs to either D1 or D2. If v belongs to D1, then we
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choose i to be the smallest integer from {1, . . . , n − 1} that has not yet been
used. Otherwise we choose i to be the largest integer from {1, . . . , n − 1} that
has not yet been used. We repeat this procedure for each atom GA created in
a successful decomposition step. Recall that the graph GB in the last successful
decomposition step is an atom of G, and we define Gi := GB , where i is the
smallest integer from {1, . . . , n− 1} that has not yet been used.

The procedure described above yields a clique separator decomposition C
of G, where C := {G1, . . . , Gk, G`, . . . , Gn−1} for some k < `. For convenience,
we relabel the atoms in such a way that the atoms have consecutive indices,
i.e., such that C := {G1, . . . , Gp}, where p = k + n − `. By our procedure, s
belongs to G1 and t belongs to Gp. We call a clique separator decomposition C
obtained from Tarjan’s algorithm with indices as defined above an ordered clique
separator decomposition (with respect to s and t). We say that C is nontrivial if
C contains at least two atoms. In that case p ≥ 2, and we can define Xi,i+1 :=
V (Gi) ∩ V (Gi+1) for i = 1, . . . , p − 1. We call X = {X1,2, . . . , Xp−1,p} the
intersection set of C.

Lemma 14. Let X be the intersection set of a nontrivial ordered clique separator
decomposition C of a graph G that is clean for two vertices s and t. Then every
set in X is a clique separator of G.

Proof. Suppose X = {X1,2, X2,3, . . . , Xp−1,p} for some p ≥ 2. Let 1 ≤ i ≤ p− 1.
We show that Xi,i+1 is a clique separator of G.

Recall that Xi,i+1 = V (Gi)∩V (Gi+1). Let X(v) be the clique separator that
created Gi, and let X(v′) be the clique separator that created Gi+1. If v = v′,
then X(v) = X(v′), and Gi and Gi+1 are the last two atoms created by Tarjan’s
algorithm. Consequently, Xi,i+1 = X(v), and the statement of the lemma is
satisfied.

Now suppose v 6= v′. Then one of the two atoms is created before the other.
We first assume that Gi was created before Gi+1. By Lemma 13, the graph
G−X(v) consists of two connected components D1 and D2 with s ∈ V (D1) and
t ∈ V (D2).

First suppose V (Gi)\X(v) belongs to D1. We need the following claim.

Claim 1. Xi,i+1 ⊆ X(v).

We prove Claim 1 as follows. Because Gi is created before Gi+1, and V (Gi)\X(v)
belongs to D1, we find that V (Gi+1)\X(v) belongs to V (D2). This means that
(V (Gi)\X(v))∩(V (Gi+1)\X(v)) = ∅. Consequently,Xi,i+1 ⊆ X(v), and Claim 1
is proven.

By Lemma 13, the graph G − X(v′) consists of two connected components
D′1 and D′2 with s ∈ V (D′1) and t ∈ V (D′2). Because Gi is created before Gi+1,
and V (Gi)\X(v) belongs to D1, we deduce that V (D1) ⊆ V (D′1) and V (D′2) ⊆
V (D2)∪X(v). Let S = V (D′1)\V (D1) and S∗ = S∩X(v). We observe that S 6= ∅
by description of Tarjan’s algorithm. Let T = V (D′2) and let T ∗ = T ∩ X(v).
We consider four cases.
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Case 1. S∗ 6= ∅ and T ∗ 6= ∅.
Then there exists a vertex s ∈ S∗ and a vertex t ∈ T ∗. Because s and t belong
to the clique X(v), we find that s and t are adjacent. However, s and t are in
two different connected components D′1 and D′2 of G−X(v′). Hence, Case 1 is
not possible.

Case 2. S∗ = T ∗ = ∅.
ThenX(v) ⊆ X(v′) ⊂ V (Gi+1). BecauseX(v) ⊂ V (Gi), this means thatX(v) ⊆
V (Gi)∩V (Gi+1) = Xi,i+1. By this and Claim 1, we then find thatXi,i+1 = X(v),
and the statement of the lemma is true.

Case 3. S∗ = ∅ and T ∗ 6= ∅.
Then s and S are in different connected components of G − X(v′). This con-
tradicts to the fact that the vertices of S and s belong to the same connected
component of G−X(v′), namely connected component D′1. Hence, Case 3 is not
possible.

Case 4. S∗ 6= ∅ and T ∗ = ∅.
First suppose V (Gi+1)\X(v′) belongs to T = V (D′2), which contains t. Then the
algorithm has chosen the largest available index from {1, . . . , n − 1} for Gi+1.
Because V (Gi)\X(v) ⊂ V (D1) and s ∈ V (D1), the algorithm has chosen the
smallest available index from {1, . . . , n−1} for Gi. Hence, the algorithm used all
available n− 1 indices. However, it still needs to process and index a subgraph
of G[S ∪ X(v′)]. This is not possible (recall that, according to Theorem 2, G
has at most n − 1 atoms, and hence the set of indices {1, . . . , n − 1} is large
enough). This means that V (Gi+1)\X(v′) does not belong to T . As a result,
V (Gi+1)\X(v′) belongs to S.

Suppose S∗ contains a vertex w /∈ V (Gi+1)\X(v′). Because S∗ ∩X(v′) = ∅,
we then find that w /∈ V (Gi+1). By definition of S∗, we have w ∈ X(v) ∩ S ⊂
V (Gi) ∩ S.

We observe the following. After Gi was created the algorithm continued with
a subgraph GB of G[V (D2) ∪ X(v)] that contains X(v), because G(Vi)\X(v)
belongs to D1. Because w ∈ X(v), we find that w ∈ V (GB). This means that w
is in an atom Gj that is created after Gi.

After Gi+1 was created, the algorithm continued with a subgraph GB′ of
G[V (D′2)∪X(v′)], because G(Vi+1)\X(v′) belongs to S ⊂ V (D′1). Because w ∈ S
and S ∩ (V (D′2) ∪X(v′)) = ∅, we find that w /∈ V (GB′). Hence, Gj must have
been created before Gi+1.

Let Gj be created by X(v′′). By Lemma 13, the graph G − X(v′′) consists
of two connected components D′′1 and D′′2 with s ∈ V (D′′1 ) and t ∈ V (D′′2 ).
Because Gj was created after Gi but before Gi+1, the algorithm would have
chosen index i + 1 as the smallest available index for Gj if V (Gj)\X(v′′) was
in D′′1 . Hence, V (Gj)\X(v′′) must belong to D′′2 . Then, after creating Gj the
algorithm continued with a subgraph GB′′ of G[V (D′′1 ) ∪X(v′′)]. We note that
GB′′ contains Gi+1, because Gi+1 is created after Gj .

Recall that w ∈ S ⊂ V (D′1). Hence, a path Q from w to t must contain a
vertex from X(v′). Because V (Gj)\X(v′′) belongs to V (D′′2 ), there exists a path
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from any vertex in V (Gj)\X(v′′) to t that uses no vertex from X(v′). Hence w ∈
X(v′′), and the set V (Gj)∩X(v′) is a clique separator of Gj . This is not possible,
because Gj is an atom. From this contradiction, we conclude that all vertices in
S∗ belong to V (Gi+1)\X(v′). Because T ∗ = ∅, we find that X(v) ⊂ V (Gi+1).
Because X(v) ⊂ V (Gi), this means that X(v) ⊆ V (Gi) ∩ V (Gi+1) = Xi,i+1. By
this and Claim 1, we then find that Xi,i+1 = X(v), and the statement of the
lemma is true.

We can use the same arguments if V (Gi)\X(v) belongs to D2. Finally, we can
also use the same arguments if Gi was created after Gi+1. This finishes the proof
of Lemma 14. ut

We say that a path P in a graph G = (V,E) passes through a set X ⊆ V if
P contains a vertex of X. If P contains k mutually vertex-disjoint subpaths Qi
with V (Qi) ⊆ X for i = 1, . . . , k such that there is no edge uv ∈ E(P ) between
any two vertices u, v that are end vertices of two different subpaths Qi, Qj , then
we say that P passes through X k times. We use this terminology in the lemma
below.

Lemma 15. Let C := {G1, . . . , Gp} be an ordered clique separator decomposition
of a graph G that is clean for two vertices s and t. Then every induced path in G
from s to t passes through each of the atoms G1, . . . , Gp exactly once, and passes
through them in increasing order, i.e., passes through Gi before passing through
Gj, for every 1 ≤ i < j ≤ p.

Proof. Let P be an induced path in G from s to t. We observe that P can only
pass each atom at most once; if P passes an atom Gi twice, then it must have
passed through a clique separator twice. Consequently, P would not be induced.
It remains to prove that P visits each atom in order of increasing index.

Because s ∈ V (G1), we find that P passes through atom G1 first. Suppose P
does not visit each atom in order of increasing index. Let Gi be the first atom
that P “skips”. Let Gj be the first atom that P passes through after leaving atom
Gi−1. Because P passes through every atom at most once, we find that j > i.
Recall that Xi,i+1 = V (Gi) ∩ V (Gi+1) is a clique separator due to Lemma 14.
By Lemma 13, vertices s and t are in two different connected components of
G − Xi,i+1. Hence P contains a vertex from Xi,i+1. Because Xi,i+1 ⊂ V (Gi),
this means that P passes through Gi at least twice. We already deduced that
this is not possible. This finishes the proof of Lemma 15. ut

4.3 Shortest induced paths in claw-free perfect graphs

We are now ready to prove the main result of this section.

Theorem 8. The Shortest Odd Induced Path problem and the Shortest
Even Induced Path problem can each be solved in O(n7) time for the class of
claw-free perfect graphs.
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Proof. In order to prove Theorem 8, we present an algorithm that solves both the
Shortest Odd Induced Path problem and the Shortest Even Induced
Path problem on claw-free perfect graphs in O(n7) time. The algorithm takes as
input a claw-free perfect graph and two of its vertices s and t. We first preprocess
this input graph by performing the two steps of the preprocessing procedure
described in Section 3.1. This way we obtain a claw-free graph G, such that s
and t are simplicial vertices of G, and G is clean for s and t. The preprocessing
phase can be done in O(n5) time by Lemma 5. As a result of Lemma 5, in order
to prove Theorem 8 it suffices to show that we can solve the two problems on G
in O(n7) time.

Next we find an ordered clique separator decomposition C := {G1, . . . , Gp}
of G with at most n−1 atoms using Tarjan’s decomposition algorithm described
in Section 4.2. We can find such a clique separator decomposition in O(nm) time
by Theorem 2.

We first prove the following claim.

Claim 1. Let Gi ∈ C. We can solve Shortest Odd Induced Path and Short-
est Even Induced Path in O(n4) time for any induced subgraph of Gi.

Let G′ be an induced subgraph of one of the atoms Gi ∈ C. The graph Gi is
a claw-free perfect graph without a clique separator, so Gi is either elementary
or peculiar by Theorem 4. By Lemma 1 and Lemma 2 we can decide in O(n3)
time whether Gi is elementary or peculiar. If Gi is peculiar, then Gi is P6-free
by Lemma 11. Since every induced subgraph of an elementary (respectively P6-
free) graph is elementary (respectively P6-free), we can solve Shortest Odd
Induced Path and Shortest Even Induced Path for the graph G′ in O(n4)
time as a result of Lemma 10 and Lemma 12, respectively. This finishes the proof
of Claim 1.

We observe that C is nontrivial, because NG(s) is a clique separator of G.
Then the intersection set X = {X1,2, . . . , Xp−1,p} of C exists. Recall that every
Xi,i+1 in X is a clique separator due to Lemma 14. Also recall that by our
indexing procedure s belongs to G1 and t belongs to Gp. Because G does not
contain irrelevant vertices, we have s ∈ V (G1) \X1,2 and t ∈ V (Gp) \Xp−1,p.

Note that, in general, a setXi−1,i might share vertices with the setXi,i+1, and
possibly with other sets in X . Let us for the moment assume that this is not the
case, i.e., that the sets in X are pairwise disjoint. At the very end of this proof we
will explain why we can make this assumption without loss of generality. Define
X0,1 := ∅, Xp,p+1 := ∅ and Vi := V (Gi) \ (Xi−1,i ∪Xi,i+1) for i = 1, . . . , p. Let
Wi := V1∪· · ·∪Vi∪X1,2∪· · ·∪Xi−1,i = V (G1)∪. . .∪V (Gi−1)∪(V (Gi)\Xi,i+1) for
i = 1, . . . , p. See Figure 6 for a schematic representation of graph G with respect
to the clique separator decomposition C (under the assumption that the sets in
X are pairwise disjoint).

We observe that any induced path from s to t contains either one vertex or
two vertices of each Xi,i+1, since each set Xi,i+1 is a clique. We now restrict our
attention to the graph G1. We claim that all vertices of G1 belong to the closed
neighborhood of s. Suppose there is a vertex v ∈ V (G1)\NG[s]. Then NG(s) is a
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Fig. 6. Structure of the graph G with respect to the clique separator decomposition C.

clique separator of G1, contradicting the assumption that G1 is an atom. Hence
we know that for every vertex x ∈ X1,2, there exists only one induced path from
s to x, and it has length 1.

In order to find a shortest odd and a shortest even induced path from s to any
vertex in Xp−1,p, we run the following algorithm for increasing i = 2, . . . , p− 1.
For each vertex v in Xi,i+1 we perform the following two steps. We state the two
steps first, before we describe how to perform them below.

Step 1. Find a shortest odd induced path from s to v in G[Wi∪{v}], or conclude
that such a path does not exist, and find a shortest even induced path from s to
v in G[Wi ∪ {v}], or conclude that such a path does not exist.

Step 2. For each v′ ∈ Xi,i+1 \ {v}, find a shortest odd induced path from s to
v in G[Wi ∪ {v, v′}] using edge v′v, or conclude that such a path does not exist,
and find a shortest even induced path from s to v in G[Wi ∪ {v, v′}] using edge
v′v, or conclude that such a path does not exist.

To execute Step 1, we act as follows. For all u ∈ Xi−1,i, we find a shortest odd
(even) induced path from u to v in the graph G′ := G[Vi ∪ {u, v}], or conclude
that such a path does not exist. Since G′ is an induced subgraph of Gi, we can
find a shortest odd (even) induced path from u to v in G′ in O(n4) time as
a result of Claim 1. Combining those shortest induced paths of both parities
with the shortest induced paths of both parities from s to u in G[Wi−1 ∪ {u}]
yields at most four induced paths from s to v in G[Wi ∪ {v}]. To check whether
there exists a shorter odd or even induced path from s to v, using two vertices of
Xi−1,i, we act as follows. For each u′ ∈ Xi−1,i\{u}, we find a shortest odd (even)
induced path from u to v in the graph G[(Vi \ NG(u′)) ∪ {u, v}]. We combine
those paths of both parities with the shortest induced paths of both parities
from s to u, using edge u′u, in the graph G[Wi−1 ∪ {u, u′}]. This way we are
guaranteed to find both a shortest odd and a shortest even induced path from
s to v in G[Wi ∪ {v}], unless one of those paths does not exist. For step 2 we
perform similar checks in O(n4) time.

After we have completed both steps for i = p − 1, we have found (if they
exist) shortest odd and shortest even induced paths from s to every vertex in
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Xp−1,p, both paths using one and paths using two vertices of Xp−1,p. Recall that
V (G1) ⊆ NG[s]. Similarly, we have V (Gp) ⊆ NG[t], which means that there is
exactly one induced path from any vertex in Xp−1,p to t, and it has length 1.
This way we find a shortest odd and a shortest even induced path from s to t, or
conclude that such a path does not exist. Because we assume that the sets in X
are pairwise disjoint, we have

∑p−1
i=1 |Xi,i+1| ≤ n. This means that we only have

to perform the O(n4) procedure for finding shortest induced paths on O(n3)
induced subgraphs of G. Hence the overall time complexity is O(n7).

What remains is to argue why we may assume that the sets in X are pairwise
disjoint. Suppose that the algorithm has processed atoms G1, . . . , Gi−1, and is
about to process atom Gi. The algorithm has found the shortest odd (even)
induced paths from s to every vertex in Xi−1,i, using either one or two vertices
of Xi−1,i. After processing atom Gi, the algorithm has extended those paths to
shortest odd (even) induced paths from s to every vertex in Xi,i+1, using either
one or two vertices of Xi,i+1. Suppose Xi−1,i and Xi,i+1 overlap, and let x be in
Xi−1,i ∩Xi,i+1. As a result of Lemma 15 and the observation that any induced
path can pass through a clique only once, the paths found for x just before the
algorithm starts processing atom Gi are exactly the same as the paths found
after Gi is processed. In other words, we do not have to perform Steps 1 and
2 for any vertex in Xi−1,i ∩Xi,i+1, since it will make no difference to the final
solution. That means we can redefine Xi,i+1 as follows: Xi,i+1 := Xi,i+1 \Xi−1,i.
Similar arguments imply that the same holds for any other set Xj,j+1 ∈ X with
j > i that overlaps with Xi−1,i. Hence, after redefining the sets in X we can run
the same algorithm. This completes the proof of Theorem 8. ut

5 Conclusions and open problems

We have proved that both the Odd Induced Path problem and the Even
Induced Path problem, and consequently the Parity Path problem, can be
solved in O(n5) time for the class of claw-free graphs. This immediately implies
that we can also decide in polynomial time whether a claw-free graph contains an
odd induced path between every pair of vertices. We also showed how we can find
a shortest induced path of given parity between two specified vertices of a claw-
free perfect graph in O(n7) time. Does there exist a polynomial-time algorithm
for the Shortest Odd Induced Path and Shortest Even Induced Path
problems for general claw-free graphs? Another interesting question is whether
or not there exists a polynomial-time algorithm for the Odd Induced Path
and Even Induced Path problems for the class of planar graphs.

One of Bienstock’s [6] NP-complete problems is to decide whether a graph
contains an odd hole passing through a given vertex. We showed that this prob-
lem, as well as the variant where we want to find an even hole through a given
vertex, can be solved in O(n7) time for the class of claw-free graphs. Recently,
Shrem et al. [35] obtained a polynomial-time algorithm for detecting a shortest
odd hole in a claw-free graph. There are a number of problems in the literature
related to finding holes in graphs. Checking if a graph has no hole is equivalent to
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deciding if the graph is chordal. It is well-known that this problem can be solved
in linear time [32]. An interesting related problem is to decide if a graph has
an odd hole. The computational complexity of this problem remains open, even
though a seemingly similar problem —deciding if a graph has an even hole—
can be solved in polynomial time [8].
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