
Proper Interval Vertex Deletion?

Pim van ’t Hof and Yngve Villanger

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pim.vanthof,yngve.villanger}@ii.uib.no

Abstract. The NP-complete problem Proper Interval Vertex Dele-
tion is to decide whether an input graph on n vertices and m edges can
be turned into a proper interval graph by deleting at most k vertices.
Van Bevern et al. (WG 2010) showed that this problem can be solved
in O((14k + 14)k+1kn6) time. We improve this result by presenting an
O(6kkn6) time algorithm for Proper Interval Vertex Deletion. Our
fixed-parameter algorithm is based on a new structural result stating that
every connected component of a {claw, net, tent, C4, C5, C6}-free graph
is a proper circular arc graph, combined with a simple greedy algorithm
that solves Proper Interval Vertex Deletion on {claw, net, tent,
C4, C5, C6}-free graphs in O(n + m) time. Our approach also yields a
polynomial-time 6-approximation algorithm for the optimization variant
of Proper Interval Vertex Deletion.

1 Introduction

Many NP-hard problems can be solved in polynomial time on restricted graph
classes. Classical examples are the polynomial-time algorithms for Graph Col-
oring, Maximum Clique and Maximum Independent Set on chordal graphs
by Gavril [10] and on perfect graphs by Grötschel, Lovász and Schrijver [13], the
polynomial-time algorithm for computing the branchwidth of a planar graph by
Seymour and Thomas [23], and Courcelle’s Theorem for solving problems ex-
pressible in monadic second-order logic on graphs of bounded treewidth [8]. We
refer to the book of Golumbic [12] for further references on algorithms for special
graph classes.

Often, algorithms for solving problems on specific graph classes can be gen-
eralized to also work for graphs that are somehow close to these graph classes.
The closeness of a graph G to a graph class Π can be defined in several ways,
leading to different types of graph modification problems. Let us mention three
types of graph modification problems here, covering many of the most natural
problems in algorithmic graph theory. The Π-Vertex Deletion problem takes
as input a graph G and an integer k, and the task is to decide whether G can be
transformed into a graph that belongs to class Π by deleting at most k vertices
from G. The Π-Edge Deletion problem is defined similarly, but now the ques-
tion is whether a member of Π can be obtained by deleting at most k edges from

? This work has been supported by the Norwegian Research Council.

G. The problem of deciding whether a graph in Π can be obtained by adding at
most k edges to G is known as the Π-Completion problem.

It is hardly surprising that the problems Π-Vertex Deletion, Π-Edge
Deletion, and Π-Completion are NP-hard for almost all natural graph classes
Π. For example, Yannakakis [27] showed that Π-Edge Deletion is NP-complete
for many different classes Π, such as forests, bipartite graphs and outerplanar
graphs. Lewis and Yannakakis [18] showed that Π-Vertex Deletion is NP-
complete for any nontrivial and hereditary graph class Π, where a graph class is
called hereditary if every induced subgraph of every graph in the class also be-
longs to the same graph class. Arguably the most famous NP-complete example
of Π-Completion is the Minimum Fill-In problem, which is the problem of
determining the smallest number of edges whose addition makes the input graph
chordal [28].

From a parameterized complexity perspective, the situation is much less clear.
We are still far from understanding what properties make a graph modification
problem fixed-parameter tractable (FPT), which means that there exists an
algorithm that solves the problem on n-vertex input graphs in f(k) · nc time,
for some constant c and some function f that depends only on k. Examples of
graph classes Π for which Π-Vertex Deletion is known to be FPT are edgeless
graphs [7], forests [5], chordal graphs [20], planar graphs [21] and proper interval
graphs [1]. On the other hand, Π-Vertex Deletion is known to be W [2]-hard
when Π is the class of wheel-free graphs [19] or the class of perfect graphs [14],
rendering it highly unlikely that an FPT algorithm exists for these classes. The
Π-Edge Deletion problem is known to be FPT when Π is the class of planar
graphs [16], forests [6], or chordal graphs [20]. For the Π-Completion problem,
FPT algorithms are known for the case where Π is the class of chordal graphs [4,
15], interval graphs [25] or proper interval graphs [15].

All the graph classes mentioned above can be characterized by a (not neces-
sarily finite) set of forbidden induced subgraphs. Cai [4] showed that the prob-
lems Π-Vertex Deletion, Π-Edge Deletion and Π-Completion are all
FPT for any hereditary graph class Π, as long as Π can be characterized by
a finite number of forbidden induced subgraphs. The result of Cai leaves the
parameterized complexity open for all hereditary graph classes that cannot be
characterized by a finite number of forbidden induced subgraphs. A typical ex-
ample, corresponding to the famous Feedback Vertex Set problem, is the
class of forests, where all the cycles are forbidden induced subgraphs.

In this paper, a hole is defined as an induced cycle of length at least 4, and
thus chordal graphs are exactly the graphs that are hole-free. Despite this sim-
ple characterization, it was not until 2006 that Marx [20] proved the Chordal
Vertex Deletion problem to be FPT. Wegner [26] (see also Brandstädt et
al. [3]) showed that proper interval graphs are exactly the class of graphs that
are {claw,net, tent,hole}-free, where the claw, the net, and the tent are three
well-known graphs on at most 6 vertices (see Figure 1). Proper interval graphs
are hereditary, since each induced subgraph of a {claw,net, tent,hole}-free graph
is also {claw,net, tent,hole}-free. Hence, by combining the aforementioned re-

2

sults of Wegner, Cai, and Marx, it can be shown that Proper Interval Ver-
tex Deletion is FPT. Recently, van Bevern et al. [1] presented an algorithm
for Proper Interval Vertex Deletion using the structure of a problem
instance that is already {claw,net, tent, C4, C5, C6}-free. Using this approach,
they obtained an algorithm with running time O((14k + 14)k+1kn6). Further-
more, they showed that the Proper Interval Vertex Deletion problem
remains NP-complete when restricted to {claw,net, tent}-free input graphs.

Our Results We present a simpler and faster algorithm for the Proper In-
terval Vertex Deletion problem than the one presented by van Bevern et
al. [1]. Our algorithm, which runs in time O(6kkn6), is based on a new combina-
torial result of independent interest, stating that every connected component of
a {claw,net, tent, C4, C5, C6}-free graph is a proper circular arc graph. Using the
structure of proper circular arc graphs, we show that Proper Interval Ver-
tex Deletion can be solved on {claw,net, tent, C4, C5, C6}-free graphs in linear
time. Our FPT algorithm for Proper Interval Vertex Deletion on gen-
eral graphs is obtained by combining this linear-time algorithm with a branching
algorithm that produces a family of {claw,net, tent, C4, C5, C6}-free problem in-
stances. Like the algorithm by Villanger et al. [25] for Interval Completion,
this is a branching algorithm where the leaves of the search tree correspond
to polynomial-time solvable problem instances, rather than potential solutions.
To complement the study of modifying a graph into a proper interval graph by
deleting vertices, we also give a polynomial-time 6-approximation algorithm for
the optimization variant of Proper Interval Vertex Deletion.

2 Preliminaries

All graphs considered in this text are simple and undirected. For a graph G =
(V,E), we use n to denote the number of vertices and m to denote the number of
edges in G. Two vertices u, v ∈ V are adjacent if {u, v} ∈ E. The neighborhood
of a vertex u in G is denoted by NG(u), and a vertex v ∈ NG(u) if {u, v} ∈ E.
The closed neighborhood of u is the set NG[u] = NG(u) ∪ {u}. Two vertices
u, v ∈ V are twins if NG[u] = NG[v]. Let S ⊆ V . We write G[S] to denote the
subgraph of G induced by S, i.e., G[S] := (S, {{u, v} ∈ E | u, v ∈ S}). The graph
G[V \S] is denoted by G−S, and we write G−v instead of G−{v} for a vertex
v ∈ V .

A path P in G is a subgraph of G whose vertices can be ordered v1, v2, . . . , vr
such that {vi, vi+1} ∈ E for 1 ≤ i < r. A path P is called induced if {vi, vj} /∈ E
whenever i + 1 < j. If {v1, vr} ∈ E, then P is a cycle in G, and this cycle
is induced if 1 and r are the only values of i and j for which i + 1 < j and
{vi, vj} ∈ E. A chord of a path (cycle) is an edge of G between two vertices of
the path (cycle) that are not consecutive on the path (cycle). The length of a
path (cycle) is the number of edges in that path (cycle). A hole is an induced
cycle of length at least 4. We use Cr to denote a hole of length r ≥ 4. A graph is
hole-free if it does not contain a hole as an induced subgraph. More generally, we

3

say that a graph G is F -free for some graph F if G does not contain an induced
subgraph isomorphic to F . For any family F of graphs, we say that G is F-free
if G is F -free for every F ∈ F . If a graph class G is F-free, then the graphs in
F are called the forbidden induced subgraphs of G.

A graph G is an interval graph if it is the intersection graph of intervals on
the real line, i.e., if each vertex of G can be assigned an interval on the real
line, such that two vertices are adjacent in G if and only if their corresponding
intervals intersect. The collection of intervals I is called an interval model of G.
A proper interval graph, also known as a unit interval graph or an indifference
graph, is an interval graph that has an interval model I where no interval is
properly contained in another interval, i.e., where no interval is a subinterval of
another interval. Alternatively, a graph is a proper interval graph if and only if
it is {claw,net, tent,hole}-free [26]; see Figure 1 for a depiction of the forbidden
induced subgraphs of proper interval graphs.

claw net tent C4 C5 C6

Fig. 1. The (infinite) family of forbidden induced subgraphs of proper interval graphs:
the claw, the net, the tent, and all the holes, i.e., all induced cycles of length at least 4.

A graph G is a circular arc graph if it is the intersection graph of arcs on a
circle, i.e., if each vertex of G can be assigned an interval (arc) on a circle such
that two vertices are adjacent in G if and only if their corresponding intervals
intersect. Like for interval graphs, the intervals in I constitute a (circular arc)
model of G. A circular arc graph is a proper circular arc graph if it has a model
I where no interval of the model is a subinterval of another interval. An example
of a proper circular arc graph (the tent) and a corresponding proper circular arc
model is given in Figure 2. A circular arc graph is a unit circular arc graph if it
has a circular arc model where all the arcs are of unit length. It is easy to see
that every unit circular arc graph is a proper circular arc graph. The reverse,
however, is not true: Tucker [24] showed that the tent (see Figure 2) is not a unit
circular arc graph. This is an interesting contrast to the well-known fact that
the classes of proper interval graphs and unit interval graphs do coincide [22].

Let G be a proper circular arc graph and let I be a proper circular arc model
of G. For any subset X ⊆ I of intervals, we say that (the union of the intervals
in) X covers the circle if every point of the circle in the model I is contained
in at least one interval in X . Recall that in any proper circular arc model, no
interval is a subinterval of another interval. Consequently, we may assume that

4

c

ba

ef

d

c

a b

d

ef

Fig. 2. A proper circular arc graph (the tent) on the left, with a corresponding proper
circular arc model on the right. The three vertices of degree 2 in the tent form a
so-called asteroidal triple, which implies that the tent is not an interval graph [17].

no single interval in I covers the circle. In fact, it is known that every proper
circular arc graph has a proper circular arc model in which no pair of intervals
covers the circle [12, 24]. Moreover, we may always assume that no two intervals
in a proper circular arc model share an endpoint, i.e., that all 2n endpoints of
intervals in I are distinct [24]. Throughout the paper, we will tacitly assume
that all proper circular arc models we consider satisfy these properties.

Given a proper circular arc model I of a proper circular arc graph G, we
refer to the clockwise direction along the circle as the right direction, whereas
the left direction refers to the counter-clockwise direction. Each vertex v of G
corresponds to an interval Iv in I whose leftmost point vs is called its start point,
and whose rightmost point ve is called its end point; note that vs and ve are
well-defined due to the assumption that no interval in I covers the circle. For
convenience, we will label an interval Iv simply with v in any figure of a circular
arc model in this paper.

For two points p1 and p2 on an interval Iv, we say that p1 is left of p2, denoted
by p1 < p2, if p2 is not a point on the subinterval of Iv from vs to p1. We write
p1 ≤ p2 if either p1 = p2 or p1 is to the left of p2. An interval Iv is to the left of
an interval Iw if vs < ws < ve < we, and in this case we say that Iw is to the
right of Iv. Note that, for any two intersecting intervals Iv, Iw ∈ I, either Iv is
to the left of Iw or vice versa, since we assume that no two intervals in I cover
the circle. For obvious reasons, we cannot define “to the left” and “to the right”
if the intervals Iv and Iw do not intersect. For two adjacent vertices v and w in
G, we say that v is to the left of w (and w is to the right of v) if the interval
Iv is to the left of the interval Iw in I. A vertex v is the leftmost neighbor of a
vertex w if v is to the left of w, and no other neighbor of w is to the left of v.
The rightmost neighbor of a vertex is defined analogously.

Let Iv and Iv be two intersecting intervals in I, where Iv is to the left of Iw.
We define the union of Iv and Iw to be the interval with start point vs and end
point we. Let X ⊆ V be a set such that G[X] is connected. Then there exists a
vertex ordering v1, v2, . . . , v|X| of the vertices in X such that G[{v1, v2, . . . , vi}]
is connected for 1 ≤ i ≤ |X|. Let X = {Iv | v ∈ X} be the set of intervals in I
corresponding to the vertices in X. The union of the intervals in X is the interval
I1,|X|, where the interval I1,i is defined recursively as the union of the interval

5

I1,i−1 and the interval Ivi , and where I1,2 is the union of intervals Iv1 and Iv2 .
Equivalently, the union of the intervals of X is the interval that contains exactly
those points of the circle of model I that are contained in at least one interval
in X .

3 Almost Proper Interval Graphs

Adopting the terminology introduced by van Bevern et al. [1], we define an almost
proper interval graph to be a {claw,net, tent, C4, C5, C6}-free graph. The main
result of this section is a theorem stating that every connected component of an
almost proper interval graph is a proper circular arc graph. Before presenting this
main result, we prove some structural properties of proper circular arc graphs
and almost proper interval graphs.

Lemma 1. Let G be a proper circular arc graph and let I be a proper circular
arc model of G. If G contains an induced cycle of length r ≥ 4, then |X | ≥ dr/2e
for any subset X ⊆ I of intervals whose union covers the circle.

Proof. Let us first recall that we may assume that all 2n start and end points
of the intervals in I are distinct. Let ε be the smallest distance on the circle
between any two of these 2n start and end points. We now construct a new
proper circular arc model I ′ from I as follows. First, for each Iv ∈ I, we add
an identical interval Iv′ to the model; we say that each added interval Iv′ is
marked. Then, for each pair of identical intervals Iv and Iv′ , we shift the start
and end points of the marked interval Iv′ by ε/2 to the right. This finishes the
construction of I ′. Note that, by construction, I ′ is a proper circular arc model,
and that all 4n start and end points of the intervals in I ′ are distinct.

Let G′ be the proper circular arc graph represented by the model I ′. We
say that a vertex v′ in G′ is marked if its corresponding interval Iv′ is marked.
Note that, for each vertex v of G, the vertices v and v′ are twins in G′, since the
intervals Iv and Iv′ intersect exactly the same set of intervals in I ′.

Suppose G′ contains an induced cycle C on r ≥ 4 unmarked vertices, and let
Y be the set of intervals in the model I ′ representing the vertices of C. Notice
that the union of the intervals in Y covers the circle of the model I ′, as in any
proper circular arc model, only induced cycles of length 3 can be represented by
intervals whose union does not cover the circle. Let X ′ be a minimal subset of
marked intervals in I ′ such that the union of the intervals in X ′ covers the circle.
Due to the minimality of X ′, the set of vertices represented by the intervals in
X ′ induces a cycle in G′.

Let the intervals of Y be numbered Iv1 to Ivr in such a way that Ivi−1 is to
the left of Ivi

for 1 < i ≤ r, and Ivr
is to the left of Iv1 . In a similar way, let the

intervals of X ′ be numbered Iu1 to Iu|X′| in such a way that Iu1 is to the left of
Iv1 , Iv1 is to the left of Iu2 , Iui−1 is to the left of interval Iui

for 1 < i ≤ |X ′|,
and Iu|X′| is to the left of Iu1 . Notice that these two orderings exist since Y and
X ′ both cover the circle, and there are no two intervals in Y ∪X ′ such that one
is a subinterval of another.

6

vr−2

vr−1

vr

u1

v1

v2

u2

v3

v4

ui−1

v2i−3

v2i−2

ui

v2i−1

Fig. 3. Figure for Case 1: vs
2 < ue

1. We prove that, in this case, ue
i < ve

2i−1 for 1 < i ≤ r.

For any two points x and y, we will say that x is to the left of y, denoted by
x < y, if x is to the left of y on the interval that is the union of the intervals in
X ′ \ {Iu|X′ |}. Note that “to the left” is well-defined here, since the union of the
intervals in X ′ \ {Iu|X′ |} does not cover the circle due to the minimality of X ′.
We now distinguish between two cases.

Case 1: vs2 < ue1.

We first prove that uei < ve2i−1 for 1 < i ≤ r by induction on i. Note that
ue2 < ve3, since the definition of I ′ implies that us2 < ue1 < ve1 < vs3, and Iv3
is not a subinterval of Iu2 (see Figure 3). Hence the claim holds for i = 2.
For the induction hypothesis, suppose that uei−1 < ve2i−3 for some i ≥ 2. Then
usi < uei−1 < ve2i−3 < vs2i−1. This, together with the observation that Iv2i−1 is
not a subinterval of Iui

, implies that uei < ve2i−1.
Since we are considering the case where vs2 < ue1 and Ivr

is not a subinter-
val of Iu1 , we have ver−2 < us1. By the above induction proof, we know that
uer−1 < ve2r−4, and hence ueb(r−1)/2c < ver−2. Consequently, interval Iub(r−1)/2c+1

is required to cover point ver−2, which implies that |X ′| ≥ b(r−1)/2c+1 = dr/2e.

vr−3

vr−2

vr−1

vr

u1

v1

v2

u2

v3

v4

ui−1

v2i−4

v2i−3

ui

v2i−2

Fig. 4. Figure for Case 2: ue
1 < vs

2. We prove that, in this case, ue
i < ve

2i−2 for 1 < i ≤ r.

Case 2: ue1 < vs2.

Since ue1 < vs2, we know that us2 < ue1 < vs2 < ue2 < ve2, where the last inequality
follows from the fact that Iv2 is not a subinterval of Iu2 (see Figure 4). Using
similar arguments as in Case 1, we can use induction on i to prove that uei < ve2i−2

for 1 < i ≤ r as follows. We already observed that the base case ue2 < ve2 holds.
Assume that uei−1 < ve2i−4 for some i ≥ 2. Then usi < uei−1 < ve2i−4 < vs2i−2.
Since Iv2i−2 is not a subinterval of Iui

, we get uei < ve2i−2.
The assumption ue1 < vs2 implies that ver−3 < us1, since otherwise Ivr−1

would be a subinterval of Iu1 . It follows from the above induction proof that
ueb(r−1)/2c < ver−3, which means that the interval Ib(r−1)/2c+1 is required to cover

7

the point ver−3. Just as in Case 1, we conclude that |X ′| ≥ b(r−1)/2c+1 = dr/2e.
ut

The following result is due to Brandstädt and Dragan [2].

Proposition 1 ([2]). Let C be an induced cycle of length at least 5 in a {claw,net }-
free graph G of diameter greater than 3. Then every vertex in V (G) \ V (C) is
adjacent exactly to two, three or four consecutive vertices of C.

The following result, which will be used in the proofs of some of the lemmas
below, easily follows from Proposition 1. Note that the class of {claw,net, C4}-
free graphs is a superclass of the class of almost proper interval graphs.

Corollary 1. Let C be an induced cycle of length at least 6 in a {claw,net, C4}-
free graph G. Then every vertex in V (G)\V (C) is adjacent exactly to two, three
or four consecutive vertices of C.

Proof. Brandstädt and Dragan [2] proved that a {claw,net}-free graph of di-
ameter greater than 3 cannot contain the C5, the tent, or the graph S−3 as an
induced subgraph, where S−3 is the graph obtained from the tent by removing
one edge between two vertices of degree 4 (such as the edge ab in Figure 2).
Moreover, it follows from the proof of Proposition 1 in [2] that we can replace
“in a {claw,net}-free graph G of diameter greater than 3” in Proposition 1 by
“in a {claw,net, S−3 }-free graph G”. Since the graph S−3 contains a C4 as an
induced subgraph, this suffices to prove Corollary 1. ut

Recall that an almost proper interval graph is a {claw,net, tent, C4, C5, C6}-
free graph. In Theorem 1 below, we prove that every connected almost proper
interval graph is a proper circular arc graph. The proof of Theorem 1 is con-
structive: given a connected almost proper interval graph G, a proper circular
arc model of G is constructed in an incremental way as follows. The algorithm
starts with an induced subgraph of G that is an induced cycle of length at least 7.
(Note that if G does not contain such a cycle, G is a proper interval graph, and
hence a proper circular arc graph.) At the start of the k-th iteration, the al-
gorithm considers an induced subgraph Gk−1 of G that is a connected proper
circular arc graph that contains an induced cycle of length at least 7. A new
vertex vk of G is added to the graph Gk−1 in such a way that the obtained
subgraph Gk of G is connected. The algorithm then constructs a proper circular
arc model of Gk from the proper circular arc model of Gk−1, and proceeds to
the next iteration. The algorithm continues until a proper circular arc model of
G has been constructed.

The crucial step in each iteration of the algorithm is the construction of a
proper circular arc model of Gk from the proper circular arc model of Gk−1. In
order to prove that we can always do this, we need a few structural lemmas. In the
three lemmas below, we consider the case where Gk is a connected almost proper
interval graph that has a vertex v := vk, such that the graph Gk−1 = Gk − v is
a proper circular arc graph that contains a cycle C = w1, w2, . . . , wr for some
r ≥ 7. Let Ik−1 be a proper circular arc model of Gk−1.

8

The first lemma below shows that, due to the presence of the long cycle C
in Gk−1, no subset of six or less intervals in Ik−1 can cover the circle.

Lemma 2. For any subset X ⊆ Ik−1 of intervals whose union covers the circle
of model Ik−1, we have that |X | ≥ 7.

Proof. Let X ⊆ I be a set of intervals whose union covers the circle. Since X
covers the circle, there is a subset X ′ ⊆ X such that X ′ covers the circle and the
vertices of Gk−1 corresponding to the intervals in X ′ induce a cycle in Gk−1. By
Lemma 1, any subset of intervals in Ik−1 that covers the circle must contain at
least 4 intervals, so |X ′| ≥ 4. In fact, since Gk−1 is {C4, C5, C6}-free, we know
that |X ′| ≥ 7. Since |X | ≥ |X ′|, the lemma follows. ut

The following lemma states that there are two consecutive vertices on cycle
C such that v is adjacent to both of them, and every other neighbor of v in Gk
is adjacent to at least one of them.

Lemma 3. There exist two consecutive vertices wt, wt+1 on cycle C such that
wt, wt+1 ∈ NGk

(v) and NGk
(v) ⊆ NGk

(wt) ∪NGk
(wt+1).

Proof. Since Gk is an induced subgraph of an almost proper interval graph, Gk
is {claw,net, tent, C4, C5, C6}-free, and in particular {claw,net, C4}-free. Hence,
by Corollary 1, the neighbors of v in Gk on cycle C are wi, wi+1, . . . , wj , where
j ≤ i+3. Let us first argue that every vertex x ∈ NGk

(v)\{wi, wi+1, . . . , wj} has
a neighbor wq such that i ≤ q ≤ j. For contradiction, let us assume that x is a
vertex of NGk

(v) \ {wi, wi+1, . . . , wj} that does not have such a neighbor. Then
j = i+1, since otherwise Gk[{x, u, wi, wj}] would be a claw. If j = i+1 and x is
adjacent to neither wi−1 nor wi+2, then Gk[{wi−1, wi, wi+1, wi+2, u, x}] is a net.
On the other hand, if x is adjacent to wi−1 or wi+2, then Gk[{x, u, wi, wi−1}] or
Gk[{x, u, wi+1, wi+2}] is a C4, respectively. In each case, we obtain the desired
contradiction.

Now let us assume, for contradiction, that there exists no integer t with i ≤
t < j such that NGk

(v) ⊆ NGk
(wt) ∪NGk

(wt+1). By Corollary 1, the neighbors
of any x ∈ NGk

(v) \ V (C) on cycle C are consecutive on the cycle, and by the
argument above, x has at least one neighbor in {wi, wi+1, . . . , wj}. Let i′ and j′

be the largest and smallest integers, respectively, such that i ≤ i′ ≤ j′ ≤ j and
NGk

(v) ⊆
⋃
i′≤τ≤j′ NGk

(wτ). Let x, y ∈ NGk
(v) be vertices such that NGk

(x) ∩
{wi′ , wi′+1, . . . , wj′} = {wi′} and NGk

(y) ∩ {wi′ , wi′+1, . . . , wj′} = {wj′}; note
that such vertices x and y exist by the definition of i′ and j′. Recall that we
assumed that there is no i ≤ t < j such that NGk

(v) ⊆ NGk
(wt) ∪NGk

(wt+1),
which means that i′ + 1 < j′. Hence, vertices x and y are not adjacent, since
otherwise Gk[{x,wi′ , wi′+1, . . . , wj′ , y}] would be a C5 or a C6. But then we
obtain a contradiction, since Gk[{u, x, wi′+1, y}] is a claw. ut

Before presenting the main result of this section, we prove one additional
lemma that describes two useful properties of the neighborhood of v in Gk.

Lemma 4. The graph Gk[NGk
(v)] is connected, and the union of the intervals

representing the vertices in NGk
(v) does not cover the circle of model Ik−1.

9

Proof. By Lemma 3, there exist two consecutive vertices wt, wt+1 ∈ NGk
(v)

on cycle C such that NGk
(v) is contained in NGk

(wt) ∪ NGk
(wt+1). Since the

vertices wt and wt+1 are adjacent and NGk
(v) ⊆ NGk

(wt) ∪ NGk
(wt+1), the

graph Gk[NGk
(v)] is connected.

Consider now the model Ik−1 of the graph Gk−1. Let z1 be the vertex in
NGk

(v) whose interval ends in the union of Iwt and Iwt+1 and starts furthest
to the left, and let z2 be the vertex in NGk

(v) whose interval starts in the
union of Iwt

and Iwt+1 and ends furthest to the right; note that it is possible
that z1 = wt or z2 = wt+1, which implies that such vertices z1 and z2 exist.
Since Ik−1 is a proper circular arc model, we have wst−2 < zs1 ≤ wst < ze1 and
zs2 < wet+1 ≤ ze2 < wet+3 (see Figure 5 for an illustration).

wt−4

wt−3

wt−2

wt−1

wt

wt+1

wt+2

wt+3

wt+4

wt+5

z1 z2

Fig. 5. Illustration for the proof of Lemma 4.

Let I∗ be the union of the intervals Iz1 , Iwt , Iwt+1 , Iz2 , i.e., I∗ is the interval
with start point zs1 and end point ze2. Since I∗ is the union of four intervals,
we know that I∗ does not cover the circle of model Ik−1 due to Lemma 2.
Moreover, by the definition of z1 and z2 and the fact that every neighbor of v
in Gk is adjacent to wt or wt+1, we know that I∗ contains Ix as a subinterval
for each neighbor x ∈ NGk

(v); in fact, I∗ is precisely the union of the intervals
representing the vertices in NGk

(v). This completes the proof of Lemma 4. ut

We are now ready to prove the main result of this section.

Theorem 1. Every connected almost proper interval graph is a proper circular
arc graph.

Proof. Let G = (V,E) be a connected almost proper interval graph. If G does
not contain an induced cycle of length at least 7, i.e., if G is hole-free, then G is
a proper interval graph due to the aforementioned result by Wegner [26]. Since
every proper interval graph is a proper circular arc graph, we are done in this
case.

Suppose G contains an induced cycle C of length r ≥ 7. Let v1, v2, . . . , vr be
an ordering of the vertices of C and let vr+1, vr+2, . . . , vn be an ordering of the
vertices in V \ V (C) such that the graph Gk := G[{v1, v2, . . . , vk}] is connected
for 1 ≤ k ≤ n. We prove, by induction on k, that Gk is a proper circular arc
graph for 1 ≤ k ≤ n.

For the base case, let us observe that the cycle C is a proper circular arc
graph. In fact, due to the choice of the ordering v1, . . . , vr, it is easy to see
that the graph Gk is a proper circular arc graph for 1 ≤ k ≤ r. Moreover, we
can easily construct a proper circular arc model Ir for the graph Gr. For the

10

induction hypothesis, assume that Gk−1 is a proper circular arc graph for some
k ≥ r+ 1, and let Ik−1 be a proper circular arc model of Gk−1. Recall that vk is
the vertex that is added to Gk−1 in order to obtain Gk. We will show that Gk is
a proper circular arc graph as follows. We first add an interval Ivk

to the model
Ik−1 (in the way described below) to obtain a new model I∗. We then modify
I∗, if necessary, such that it becomes a proper circular arc model of the graph
Gk.

Let us first explain how the interval Ivk
is added to the proper circular arc

model Ik−1 in order to obtain the (not necessarily proper) circular arc model
I∗. By Lemma 3, NGk

(vk) contains two consecutive vertices wt, wt+1 of cycle C,
such that all vertices of NGk

(vk) are contained in NGk
(wt)∪NGk

(wt+1). Let z1
be the vertex in NGk

(vk) with the leftmost end point ze1 (z1 ∈ NGk
[wt]), and let

z2 be the vertex in NGk
(vk) with the rightmost start point zs2 (z2 ∈ NGk

[wt+1]).
Vertices z1 and z2 are well-defined as a result of Lemma 4. Notice that z1 6= z2,
as both wt and wt+1 are contained in NGk

(vk) by definition. The interval Ivk

is now added to the model Ik−1, where the positions of the start point vsk and
the end point vek of Ivk

depend on whether or not z1 and z2 are adjacent in the
following way (see Figure 6 for an illustration):

– If {z1, z2} 6∈ E, then vsk is placed immediately to the left of ze1 and vek is
placed immediately to the right of zs2, such that there exists no start or end
point p1 in model Ik−1 where vsk < p1 < ze1 and there exists no start or end
point p2 where zs2 < p2 < vek.

– If {z1, z2} ∈ E, then vsk is placed immediately to the left of zs2 and vek is
placed immediately to the right of ze1, such that there exists no start or end
point p1 in model Ik−1 where vsk < p1 < zs2 and there exists no start or end
point p2 where ze1 < p2 < vek.

z1

vk

z2 z1

z2

vk

Fig. 6. Illustration of the way interval Ivk is added to proper circular arc model Ik−1

in order to obtain model I∗, in case {z1, z2} 6∈ E (left figure) or {z1, z2} ∈ E (right
figure).

Let I∗ be the model we obtain by adding interval Ivk
to Ik−1 in the way

described above. It is clear that I∗ is a circular arc model. However, I∗ is not
necessarily a proper circular arc model, as there might be an interval Ix in I∗
such that Ix is a subinterval of Ivk

, or vice versa. If such a vertex x exists, we
call it an obstruction vertex of type 1. Moreover, it is not guaranteed that I is
a circular arc model of the graph Gk, as there might be a vertex x such that
{x, vk} /∈ E(Gk) and Ix intersects Ivk

. Such a vertex x is called an obstruction

11

vertex of type 2. Note that a vertex x can be both an obstruction vertex of type
1 and an obstruction vertex of type 2 at the same time.

If no obstruction vertex of type 1 or 2 exists, then I∗ is a proper circular arc
model for Gk, and thus Gk is a proper circular arc graph. In that case, we set
Ik := I∗, and we proceed to the next subgraph Gk+1 (unless k = n, in which
case we are done). If there exists an obstruction vertex of type 1 or 2, then
we will show below how the model I∗ can be modified in such a way that the
number of obstruction vertices strictly decreases, eventually leading to a proper
circular arc model Ik of Gk. It is clear that this suffices to prove Theorem 1.

Suppose there exists an obstruction vertex x of type 1 or 2. As usual, we write
Ix to denote the interval in I∗ that corresponds to x, and xs and xe to denote the
start and end points of Ix, respectively. Let us consider all possible positions of
the points xs and xe in the model I∗ with respect to the positions of the points
ze1 and zs2. There are 24 permutations of the four points xs, xe, ze1, z

s
2. Since Ix is

an interval in the model Ik−1, we know that xs < xe. Hence 12 permutations of
the four points xs, xe, ze1, z

s
2 remain, each satisfying xs < xe. Consider the cases

where xs and xe are both to the left of zs1 or both to the right of ze2. Since in
those cases Ix and Ivk

do not intersect, x is not an obstruction vertex of type
1. Moreover, since we also know that x 6∈ NGk

(vk) by the definition of z1 and
z2, x is not an obstruction vertex of type 2 either. Since we assumed x to be
an obstruction vertex, we can therefore safely ignore the permutations where
xs < xe < ze1 < zs2, xs < xe < zs2 < ze1, ze1 < zs2 < xs < xe, or zs2 < ze1 < xs < xe.
The eight remaining permutations are listed and illustrated in Figure 7.

In the remainder of this proof, we will consider each of these eight cases
separately. In fact, for each of the cases, we will consider two subcases, indicated
with “a” and “b”, depending on the existence of the edge {x, vk} in Gk. For
example, Case 1a is the case where xs < ze1 < zs2 < xe and x 6∈ NGk

(vk),
whereas Case 1b is the case where xs < ze1 < zs2 < xe and x ∈ NGk

(vk). Note
that Case 2 is symmetric to Case 5, and Case 4 is symmetric to Case 7.

We will use two different proof strategies in the case analysis below. For each
of the Cases 4, 6, 7, and 8 (and therefore for both of their subcases), as well as
for the Cases 1a, 2b, 3a, and 5b, we prove that they cannot occur in I∗, as this
would contradict the assumption that Gk is {claw,net, tent, C4, C5, C6}-free. For
the Cases 1b and 3b, we show how we can manipulate model I∗ in such a way
that the number of obstruction vertices strictly decreases. In Case 2a (and by
symmetry also in Case 5a), we can either manipulate the model and strictly
reduce the number of obstruction vertices, or obtain a contradiction, depending
on whether or not x and z1 (respectively z2) are twins in Gk−1. Note that once
we have successfully decreased the number of obstruction vertices to 0, we have
obtained a proper circular arc model Ik of Gk.

Before we start with the case analysis, let us make some observations. First,
due to Lemma 4, the intervals Iz1 and Iz2 can only intersect if zs2 < ze1. Fur-
thermore, due to Lemma 2, we need the union of at least 7 intervals in order
to cover the circle of model I∗. This means that we can interpret a section of
a proper circular arc model as a proper interval model if the section contains a

12

z1

vk

z2

x

Case 1: xs < ze
1 < zs

2 < xe

z1

vk

z2

x

Case 2: xs < ze
1 < xe < zs

2

z1

z2

vk

x

Case 3: xs < zs
2 < ze

1 < xe

z1

z2

vk

x

Case 4: xs < zs
2 < xe < ze

1

z1

vk

z2

x

Case 5: ze
1 < xs < zs

2 < xe

z1

vk

z2

x

Case 6: ze
1 < xs < xe < zs

2

z1

z2

vk

x

Case 7: zs
2 < xs < ze

1 < xe

z1

z2

vk

x

Case 8: zs
2 < xs < xe < ze

1

Fig. 7. Eight possible ways in which the points xs and xe of an obstruction vertex x
can appear in model I∗ with respect to the points ze

1 and zs
2. (In fact, we prove that

Cases 4, 6, 7, and 8 do not occur in I∗.)

subset of at most six intervals that cover the entire section. Since this is the case
for each of the cases we discuss below (as is apparent from the corresponding
figures), this observation justifies the horizontal drawing of the section of model
I∗ that we consider in each case. Finally, in the analysis below, one should keep
in mind that the graph Gk is {claw,net, tent, C4, C5, C6}-free, as it is an induced
subgraph of the {claw,net, tent, C4, C5, C6}-free graph G.

Case 1a: xs < ze1 < zs2 < xe, x 6∈ NGk
(vk)

Vertices z1 and z2 are not adjacent, but both of them are adjacent to x and
to vk. Hence Gk[{z1, x, z2, vk}] is a C4. This contradiction implies that Case 1a
cannot occur in I∗.

Case 1b: xs < ze1 < zs2 < xe, x ∈ NGk
(vk)

Suppose x has neighbors x1 and x2 such that xs1 < xs < xe1 < ze1 < zs2 < xs2 <
xe < xe2 (see Figure 8). Then x1, x2 6∈ NGk

(vk) by the definition of z1 and z2.
Moreover, the vertices x1 and x2 are not adjacent, since xe1 < xs2. But then
G[{x1, x, x2, vk}] is a claw, yielding a contradiction.

Now suppose that x does not have such neighbors x1 and x2, which implies
that z1 is the leftmost neighbor of x or z2 is the rightmost. Assume that z1 is
the leftmost neighbor of x (see Figure 8); the case where z2 is the rightmost
neighbor of x can be dealt with analogously. The assumption that z1 is the

13

leftmost neighbor of x implies that, for every point p that is a start or end point
of an interval in model I∗ such that xs < p < vsk, p is a start point.

Let Y := {y ∈ V (Gk) | xs ≤ ys < vsk}. Note that Y is non-empty, since
x ∈ Y . Since we are considering the case where xs < ze1 < zs2 < xe, x is an
obstruction vertex of type 1. We claim that the same holds for every y ∈ Y \{x}.
Let y ∈ Y \ {x}. Since y is to the right of x in the proper circular arc model
Ik−1, we must have xe < ye, and hence vek < ye. This implies that Ivk

is a
subinterval of Iy, so y is an obstruction vertex of type 1 by definition. We also
claim that none of the vertices in Y is an obstruction vertex of type 2. For x,
this follows from the fact that Ix and Ivk

intersect in model I∗, together with
the assumption that x ∈ NGk

(vk). Let y ∈ Y \ {x}. Notice that y ∈ NGk
(vk),

since otherwise Gk[{x, y, z1, z2}] would be a C4 (see also Case 1a). Since Iy and
Ix intersect, y is not an obstruction vertex of type 2.

z1

vk

z2

x
y1

x1 x2

Fig. 8. Illustration for Case 1b.

We will now explain how we can modify model I∗ in such a way that the
number of obstruction vertices strictly decreases. We extend interval Ivk

by mov-
ing the point vsk to the immediate left of xs, making sure that there is no start
or end point p of any interval in I∗ with vsk < p < xs. Note that after extending
Ivk

this way, none of the vertices in Y is an obstruction vertex of type 1 any-
more, since we already saw that xe < ye for every y ∈ Y , implying that Iy did
not become a subinterval of the extended interval Ivk

. Also note that no new
obstruction vertices of type 1 or type 2 are created, due to the assumption that
no interval in I∗ has an end point p with xs < p < vsk. Since Y is non-empty,
the number of obstruction vertices strictly decreased.

Case 2a: xs < ze1 < xe < zs2, x 6∈ NGk
(vk)

Let us first argue why x is not an obstruction vertex of type 1. Recall that the
points vsk and vek were placed in model Ik−1 immediately to the left of ze1 and
immediately to the right of zs2, respectively. This, together with the assumption
xs < ze1 < xe < zs2, implies that xs < vsk < ze1 < xe < zs2 < vek in this case.
Hence Ix is not a subinterval of Ivk

or vice versa, which means that x is not an
obstruction vertex of type 1.

On the other hand, x is an obstruction vertex of type 2, as x 6∈ NGk
(vk) and

the intervals Ix and Ivk
intersect in model Ik−1. We distinguish between two

cases, depending on whether or not x is a twin of z1 in the graph Gk−1.
First suppose that x and z1 are twins in Gk−1, i.e., NGk−1 [x] = NGk−1 [z1].

We swap the intervals assigned to x and z1, i.e., we relabel interval Ix as Iz1

14

and relabel interval Iz1 as Ix. Let I ′ denote the model obtained after the swap.
Note that the swap did not change any of the adjacencies in the graph Gk−1,
as x and z1 are twins. However, it is possible that z1 is no longer the leftmost
neighbor of vk in model I ′, as there might exist a neighbor z′ of vk that was
to the left of x and to the right of z1 in model Ik−1, which means that z′ is
to the left of z1 in model I ′. Hence, we redefine z1 to be the leftmost neighbor
of vk in model I ′. Note that the interval representing the new vertex z1 is to
the right of the interval that was labeled Iz1 in model Ik−1, since that interval
corresponds to vertex x in model I ′, and x is not adjacent to vk by assumption.
Recall that, when interval Ivk

was added to model Ik−1, the positions of vsk and
vek were chosen with respect to the positions of ze1 and zs2 in Ik−1. Hence, as z1
was redefined in model I ′, we also need to redefine the start point of interval Ivk

accordingly, i.e., we must place the point vsk immediately to the left of the new
point ze1. For convenience, we again use I ′ to denote the obtained model.

We claim that the number of obstruction vertices in model I ′ is strictly
smaller than in model Ik−1. First, we observe that x is no longer an obstruction
vertex, as xs < zs1 < xe < vsk < ze1 implies that Ix does not intersect Ivk

in model
I ′. It remains to show that the swap did not create any new obstruction vertices.
Let us first observe that since x and z1 are twins in Gk−1, every vertex y that is
to the right of z1 and to the left of x in model Ik−1 is a twin of x and z1. This,
together with the definition of the new vertex z1 as the leftmost neighbor of vk
in model I ′, implies that the swap did not change any of the adjacencies in Gk,
and consequently no new obstruction vertices of type 2 were created. Suppose,
for contradiction, that there is a vertex y that was not an obstruction vertex of
type 1 in model Ik−1, but is an obstruction vertex of type 1 in model I ′. Note
that the length of the interval Ivk

strictly decreased, as the point vsk was moved
to the right. Hence, Ivk

is a subinterval of Iy in model I ′ (and not the other
way around). Since y was not an obstruction vertex of type 1 in model Ik−1,
but is an obstruction vertex in model I ′, we must have zs1 < ys < xs in the
proper circular arc model Ik−1. This contradicts the assumption that x and z1
are twins in Gk−1.

Now consider the case where x and z1 are not twins in Gk−1. Then there
exists a vertex z′1 ∈ NGk−1 [z1] \NGk−1 [x] or a vertex x′ ∈ NGk−1 [x] \NGk−1 [z1]
(see Figure 9). Suppose there exists a vertex z′1 ∈ NGk−1 [z1] \NGk−1 [x]. Interval
Iz′1 is to the left of interval Iz1 in model Ik−1. Hence, by the definition of z1,
we have z′1 6∈ NGk−1(vk). This yields a contradiction, since Gk[{z′1, z1, x, vk}] is
a claw.

z1

vk

z2

xz′
1

w1

w2

x′

Fig. 9. Illustration for Case 2a.

15

Now suppose that x has a neighbor x′ not adjacent to z1, which means that x′

is to the right of x (see Figure 9). Vertex x′ is not adjacent to vk, since otherwise
Gk[{vk, z1, x, x′}] would be a C4. Recall that G, and by construction also Gk−1,
contains the induced cycle C of length at least 7. Since Ik−1 is a proper circular
arc model, the intervals representing the vertices of C cover the circle. Let w1

be the leftmost neighbor of z1 contained in C, and let w2 be the left neighbor of
w1 on C. As there is no vertex in NGk−1 [z1] \NGk−1 [x], we get w1 ∈ NGk−1(x).
Vertex w1 is not adjacent to vk, as it is to the left of z1 and z1 is the leftmost
neighbor of vk. Moreover, since we1 is to the left of vsk and the start point of
interval Ix′ is to the right of vsk, w1 is not adjacent to x′. Finally, as w2 is to
the left of w1, vertex w2 is not adjacent to any vertex in {z1, x, vk, x′, z2}. Then
Gk[{w2, w1, z1, x, x

′, vk}] is a net, yielding a contradiction.

Case 2b: xs < ze1 < xe < zs2, x ∈ NGk
(vk)

In this case, since x ∈ NGk
(vk) and the intervals Ix and Ivk

intersect in model
Ik−1, x is not an obstruction vertex of type 2. As we explained at the start of
Case 2a, x is also not an obstruction vertex of type 1. We conclude that Case
2b cannot occur in model I∗.

Case 3a: xs < zs2 < ze1 < xe, x 6∈ NGk
(vk)

As the intervals in Ik−1 representing the vertices of cycle C cover the circle,
there exist two vertices w1 and w2 on C such that w1 the leftmost neighbor of
z1 contained in C and w2 is the rightmost neighbor of z2 contained in C (see
Figure 10). Vertices w1 and w2 are not adjacent to vk, as z1 and z2 are defined as
the leftmost and rightmost neighbors of vk, respectively. If w1 (respectively w2)
is not adjacent to x, then Gk[{w1, z1, vk, x}] (respectively Gk[{w2, z2, vk, x}]) is
a claw. Hence, both w1 an w2 must be adjacent to x.

z1

z2

vk

x
w1 w2

z1

z2

vk

x
w1

w2w3

w4

Fig. 10. Illustration for Case 3a. Vertices w1 and w1 are either not adjacent (left figure)
or adjacent (right figure) in Gk.

Suppose w1 and w2 are not adjacent (see the left side of Figure 10). If
w1 is adjacent to z2 or if w2 is adjacent to z1, then Gk[{w1, z2, vk, w2}] or
Gk[{w1, z1, w2, vk}]) is a claw, respectively. This means that w1 is not adja-
cent to z2 and w2 is not adjacent to z1. But then Gk[{w1, w2, z1, z2, vk, x}] is a
tent, yielding a contradiction.

Now suppose w1 and w2 are adjacent (see the right side of Figure 10). Let
w3 be the left neighbor of w1 on cycle C, and let w4 be the right neighbor
of w2 on C. Since C is an induced cycle, the vertices w3, w1, w2, w4 form an

16

induced path. Both w1 and w2 are adjacent to z1, and neither w3 nor w4 is
adjacent to z1 by the definition of w1 and w2. Since vk is not adjacent to any
of the vertices w1, w2, w3, w4, graph Gk[{z1, w1, w2, w3, w4, vk}] is a net. This
contradiction shows that Case 3a cannot occur in model I∗.

Case 3b: xs < zs2 < ze1 < xe, x ∈ NGk
(vk)

Since x ∈ NGk
(vk) and intervals Ix and Ivk

intersect, x is not an obstruction
vertex of type 1. However, since Ivk

is a subinterval of Ix, x is an obstruction
vertex of type 2. As we showed in Case 1b, x cannot have two neighbors x1

and x2 such that xs1 < xs < xe1 < vsk and vek < xs2 < xe < xe2, since then
Gk[{x1, x, x2, vk}] would be a claw. As a consequence, either no end point of any
interval in model I∗ can be to the right of xs and to the left of vsk, or no start
point of any interval in I∗ can be to the right of vek and to the left of xe.

Let us assume that no end point appears to the right of xs and to the left of
vsk; the other case can be dealt with analogously. Just like in Case 1b, we define
a set Y := {y ∈ V (Gk) | xs ≤ ys < vsk}. Note that Y is non-empty, as x ∈ Y .
We can use the exact same arguments as in Case 1b to show that none of the
vertices in Y is an obstruction vertex of type 2, and that every vertex in Y is
an obstruction vertex of type 1 due to the fact that, for every y ∈ Y , Ivk

is a
subinterval of Iy in model I∗.

We modify model I∗ in the exact same way as in Case 1b: we move the start
point vsk of interval Ivk

to the immediate left of xs, making sure that no start
or end point of any interval in I∗ lies to the right of vsk and to the left of xs. As
we saw in Case 1b, extending Ivk

this way does not create any new obstruction
vertices. Moreover, as the vertices of Y are no longer obstruction vertices in
the new model and the set Y is non-empty, the number of obstruction vertices
strictly decreased.

4a: xs < zs2 < xe < ze1, x 6∈ NGk
(vk)

Recall that the intervals representing the vertices of C cover the circle of model
I∗. Let w1 and w2 be vertices of C such that w1 is the leftmost neighbor of x
contained in C and w2 is the rightmost neighbor of z2 contained in C. Further-
more, let w3 be the left neighbor of w1 in C, and let w4 be the right neighbor of
w2 in C (see Figure 11).

z1

z2

vk

x
w1 w2

w3 w4

Fig. 11. Illustration for Case 4a.

By the definition of z1 and z2, vertex vk is not adjacent to any of the vertices
w1, w2, w3, w4. Vertex w2 is adjacent to x, since otherwise Gk[{w2, z2, vk, x}] is a

17

claw. Vertex w3 is adjacent to w1, but not to any vertex in the set {x, vk, z1, z2,
w2, w4}, as w1 the leftmost neighbor of x and w3 is to the left of w1. By symmetri-
cal arguments, w4 is adjacent to w2, but not to any vertex in {x, vk, z1, z2, w1, w4}.
Vertices w3 and w4 are not adjacent, since then the six intervals Iw3 , Iw1 , Iz1 ,
Iz2 , Iw2 , and Iw4 would cover the circle of the proper circular arc model Ik−1,
contradicting Lemma 2.

Since the graph Gk[{vk, z2, x, w2, w4, w1}] is not a net, at least one of the
edges {w1, w2}, {w1, z2} is present in Gk; all other potential edges have al-
ready been excluded. Suppose {w1, w2} /∈ E, which means that {w1, z2} ∈ E.
In this case, G[{w1, z2, w2, vk}] is a claw, yielding a contradiction. Hence we
must have {w1, w2} ∈ E. Moreover, we must have {w1, z2} ∈ E, since other-
wise Gk[{w1, w2, w4, z2}] would be a claw. Now we obtain a contradiction, as
G[{vk, z2, w3, w1, w4, w2}] is a net. We conclude that Case 4a cannot occur in
model I∗.

Case 4b: xs < zs2 < xe < ze1, x ∈ NGk
(vk)

Recall that z1 is defined to be the leftmost neighbor of vk in model I∗. Since x is
adjacent to vk and x is to the left of z1, we immediately obtain a contradiction,
implying that Case 4b cannot occur.

Case 5: ze1 < xs < zs2 < xe

This case is symmetric to Case 2.

Case 6a: ze1 < xs < xe < zs2, x 6∈ NGk
(vk)

In this case, the vertices z1 and z2 are not adjacent to each other, and neither z1
nor z2 is adjacent to x. By Lemma 3, there exist two consecutive vertices wt, wt+1

on cycle C such that wt, wt+1 ∈ NGk
(vk) and NGk

(vk) ⊆ NGk
(wt)∪NGk

(wt+1).
Note that, apart from interval Ivk

, there is no interval in model I∗ whose start
point is to the left of ze1 and whose end point is to the right of zs2, since otherwise
Ix would be a subinterval of such an interval in Ik−1, contradicting the assump-
tion that Ik−1 is a proper circular arc model. In particular, this means that there
is an induced path z1, wi, wi+1, z2 in NGk

(vk) such that wi, wi+1 are vertices of
C; it is possible that z1 = wt or z2 = wt+1. Interval Ix is not a subinterval of Iwi

or Iwi+1 in the proper circular arc model Ik−1, so x is adjacent to both wi and
wi+1. Now we have a contradiction, since Gk[{z1, wi, wi+1, z2, x, vk}] is a tent.
Hence Case 6a does not occur in model I∗.

Case 6b: ze1 < xs < xe < zs2, x ∈ NGk
(vk)

Just like in Case 6a, z1 and z2 are not adjacent to each other or to vertex x.
Since we now consider the case where x ∈ NGk

(vk), the graph Gk[{z1, x, z2, vk}]
is a claw. This contradiction implies that Case 6b cannot occur.

Case 7: zs2 < xs < ze1 < xe

This case is symmetric to Case 4.

18

Case 8: zs2 < xs < xe < ze1
This case cannot occur, since Ix is a subinterval of both Iz1 and Iz2 , contradicting
the assumption that Ik−1 is a proper circular arc model of Gk−1.

For each of the eight cases above, we either proved that they cannot occur in
model I∗, or we showed how model I∗ can be manipulated in such a way that
the number of obstruction vertices strictly decreases. Since we obtain a proper
circular arc model Ik of Gk once we have successfully decreased the number of
obstruction vertices to 0, this completes the proof of Theorem 1. ut

4 Algorithmic Implications

In this section, we present an O(6kkn6) time algorithm for Proper Interval
Vertex Deletion. Our FPT algorithm is based on the structural character-
ization of almost proper interval graphs given in Theorem 1, together with a
linear-time algorithm for solving Proper Interval Vertex Deletion on al-
most proper interval graphs. We also present a 6-approximation algorithm for
the optimization variant of Proper Interval Vertex Deletion on general
graphs.

Recall that Wegner [26] showed that the class of proper interval graphs is
exactly the class of {claw,net, tent,hole}-free graphs, and that an almost proper
interval graph is defined to be a {claw,net, tent, C4, C5, C6}-free graph. Hence,
a graph G is a proper interval graph if and only if G is an almost proper interval
graph that is hole-free. Solving the Proper Interval Vertex Deletion prob-
lem on almost proper interval graphs therefore boils down to finding a smallest
subset of vertices in an almost proper interval graph whose deletion destroys all
the holes in the graph. This motivates the following definition.

Let G = (V,E) be a connected almost proper interval graph. A hole cut of G
is a vertex set X ⊆ V such that G−X is a proper interval graph. A hole cut X
of G is minimal if X is empty or if, for every proper subset X ′ ⊂ X, the graph
G −X ′ contains a hole. A hole cut of G is minimum if G does not have a hole
cut whose size is strictly smaller than the size of X.

Due to Theorem 1, graph G is a proper circular arc graph. Let I be a proper
circular arc model of G. For any vertex v ∈ V , let Rv denote the set of neighbors
of v that are to the right of v, i.e., Rv := {w ∈ V | ws < ve < we}. Clearly,
for every vertex v ∈ V , the set Rv is a hole cut; after all, in the proper circular
arc model I ′ of the graph G− Rv, vertex v does not have any neighbor that is
to the right of v. This implies that we can “cut” the circle in model I ′ to the
immediate right of point ve in order to obtain a proper interval model of G−Rv.
The following lemma shows that every minimal hole cut of G is exactly the set
Rv for some v ∈ V .

Lemma 5. Let G be a connected almost proper interval graph, and let I be a
proper circular arc model of G. For every minimal hole cut X of G, there exists
a vertex v in G such that X = Rv.

19

Proof. First suppose G is a proper interval graph. Then the unique minimal
hole cut of G is the empty set. Moreover, since G is connected, there is a unique
vertex v ∈ V (G) such that Rv is empty. Hence, X = Rv in this case.

Now suppose G is not a proper interval graph. Let X be a minimal hole cut
of G. Suppose, for contradiction, that Rv 6⊆ X for each vertex v ∈ V (G). Then
every vertex in V (G) \ X has a neighbor to the right, where “to the right” is
defined with respect to the proper circular arc model I of G. As a consequence,
there exists a set of intervals in I representing vertices in V (G)\X such that the
union of these covers the circle. Let Y be an inclusion-minimal such set. Since G
is a connected almost proper interval graph that is not a proper interval graph,
G contains a hole C of length at least 7. Moreover, since G is a proper circular
arc graph by Theorem 1, we know by Lemma 1 that for every subset X ⊆ I of
intervals that cover the circle of model I, we have |X | ≥ 4. This implies that
|Y| ≥ 4, which means that the set Y of corresponding vertices in G induces a
hole in G. Since Y ∩ X = ∅, the vertices in Y also induce a hole in G − X,
contradicting the fact that X is a hole cut of G. ut

Lemma 5 implies that a connected almost proper interval graph contains
at most n minimal hole cuts. The next lemma shows how we can exploit this
fact in order to solve Proper Interval Vertex Deletion in linear time on
connected almost proper interval graphs.

Lemma 6. The Proper Interval Vertex Deletion problem can be solved
in O(n+m) time on almost proper interval graphs.

Proof. Let (G, k) be an instance of Proper Interval Vertex Deletion,
where G is an almost proper interval graph. Let us first assume that G is con-
nected; at the end of this proof, we consider the case where G is not connected.
Note that (G, k) is a yes-instance if and only if G has a hole cut of size at most k.
Hence, in order to prove Lemma 6 for connected almost proper interval graphs,
it suffices to show that we can find a minimum hole cut of G in O(n+m) time.

We first check if G is a proper interval graph. It is well-known that this can
be done in O(n+m) time, for example using the recognition algorithm for proper
interval graphs by Deng et al [9]. If G is a proper interval graph, then the empty
set is the unique minimum hole cut of G.

Suppose G is not a proper interval graph. By Lemma 5, for every minimal
hole cut X of G, there exists a vertex v ∈ V (G) such that X = Rv. Since a
minimum hole cut is also minimal, we only need to show how we can find, in
linear time, a set Rv in G of smallest size. In order to find such a set, we use
a FIFO queue Q, where vertices of G will be added to the back of the queue
and removed from the front of the queue. We will make two “round trips” along
the circle of model I, starting at point xe for an arbitrary vertex x of G, and
traversing the circle in the clockwise direction, i.e., from left to right.

The first round trip is used to add and remove vertices to and from Q in such
a way that at the moment xe has been reached for the second time, Q contains
exactly the vertices of Rx. This can be done as follows. After adding x to the
queue, we start traversing the circle from left to right, starting at point xe. As

20

soon as a point ys is reached, vertex y is added to the back of the queue, and
vertex y is removed from the front of queue as soon as point ye is reached. Note
that the fact that I is a proper circular arc model guarantees that vertex y is
at the front of the queue at the moment ye is reached. Let us consider which
vertices are in the queue at the moment xe has been reached for the second time,
i.e., at the moment x has been removed from the queue for the first time. For
every vertex z ∈ V (G) \ Rx, we encountered both zs and ze, which means that
z is not in Q. On the other hand, for every z ∈ Rx, we only encountered point
zs, and not ze. This means that Q contains exactly the vertices of Rx after xe

has been reached for the second time.
In the second round trip, we again add a vertex y to the queue when ys is

reached, and remove y from the queue when as soon as point ye is reached. Every
time a point ye is reached, Q contains exactly those vertices whose intervals
contain the point ye, i.e., Q contains exactly the vertices of the set Ry. Hence,
by keeping track of the size of Q during the second round trip, and returning
the elements of Q at the moment it has smallest size, we can find a set Rv such
that |Rv| ≤ |Rw| for every w ∈ V (G). As we argued before, such a set Rv is a
minimum hole cut of G due to Lemma 5.

It remains to argue how to proceed when the input graph G is not connected.
Let G1, . . . , Gr be the connected components of G, and let ni and mi denote
the number of vertices and edges in Gi, respectively, for 1 ≤ i ≤ r. For each
connected component Gi, we can use the above procedure to find, in O(ni+mi)
time, a minimum hole cut of Gi. Let xi be the size of a minimum hole cut in Gi,
for 1 ≤ i ≤ r, and let x :=

∑r
i=1 xi. Since

∑r
i=1 ni = n and

∑r
i=1mi = m, the

value of x can be computed in O(n + m) time. It is obvious that G has a hole
cut of size at most k if and only if x ≤ k. ut

We are now ready to provide an efficient FPT algorithm for the Proper
Interval Vertex Deletion problem on general graphs.

Theorem 2. The Proper Interval Vertex Deletion problem can be solved
in O(6kkn6) time.

Proof. Let (G, k) be an instance of Proper Interval Vertex Deletion, and
let us refer to the integer k as the budget of the instance. Any set X ⊆ V (G)
with |X| ≤ k such that G−X is a proper interval graph is called a solution for
(G, k). Recall that the forbidden induced subgraphs of proper interval graphs are
the claw, the net, the tent, and all the holes [26] (see also Figure 1). In order to
transform G into a proper interval graph, we need to delete vertices from G such
that the obtained graph does not contain any of the aforementioned forbidden
induced subgraphs.

The first phase of the algorithm is a bounded search tree procedure that
transforms the instance (G, k) into O(6k) sub-instances, such that the graph
in each sub-instance is an almost proper interval graph, and the budget is at
least 0. This is done as follows. Starting with the instance (G, k), the algorithm
checks whether G contains a subset of vertices U such that U induces a claw, a
net, a tent, a C4, a C5, or a C6 in G. Since each of these graphs has at most six

21

vertices, this check can trivially be performed in O(n6) time. If no such set U
is found, then G is an almost proper interval graph, and the algorithm proceeds
to the next phase. If such a set U is found, the algorithm branches on the at
most six possible ways of deleting a single vertex u from U , creating at most six
sub-instances (G′, k′), where G′ := G−u for some vertex u ∈ U , and k′ := k−1.
Since any solution for (G, k) must contain at least one vertex of each forbidden
induced subgraph in G, we have that (G, k) is a yes-instance if and only if at
least one of the sub-instances (G′, k′) is a yes-instance of Proper Interval
Vertex Deletion.

As long as there is a sub-instance in which the graph is not an almost proper
interval graph and the budget is at least 1, another round of branching is per-
formed; every sub-instance in which the graph is already an almost proper in-
terval graph is left untouched. Each time the algorithm branches, the budget is
decreased by exactly 1. Since the initial budget was k, the first phase is completed
after at most k rounds of branching. The above procedure naturally defines a
search tree, where each of the leaves corresponds to a sub-instance. At the end
of the first phase, the algorithm discards every sub-instance in which the graph
is not {claw,net, tent, C4, C5, C6}-free and the budget is 0. If all sub-instances
are discarded, then G contains more than k vertex-disjoint forbidden induced
subgraphs, which means that (G, k) is a no-instance. Otherwise, the algorithm
proceeds to the second phase, which is described below. Since the algorithm
branches at most k times, the total number of sub-instances that is created in
the first phase of the algorithm is O(6k). The total time used in this phase is
O(6kkn6).

In the second phase, the algorithm considers each sub-instance (G′′, k′′) where
G′′ is an almost proper interval graph and k′′ ≥ 0. Since G′′ is an almost proper
interval graph, we can use the algorithm of Lemma 6 to decide in O(n + m)
time whether (G′′, k′′) is a yes-instance. As argued before, it is clear that (G, k)
is a yes-instance if and only if at least one of the sub-instances (G′′, k′′) is a
yes-instance. This completes the proof of Theorem 2. ut

For the remainder of this subsection, we consider Proper Interval Vertex
Deletion to be an optimization problem rather than a decision problem. In
other words, we define Proper Interval Vertex Deletion to be the problem
that takes as input a graph G, and the task is to find a vertex subset X ⊆ V (G)
of minimum size such that G − X is a proper interval graph. We now show
how the FPT algorithm of Theorem 2 can be turned into a 6-approximation
algorithm for Proper Interval Vertex Deletion.

Theorem 3. There is a 6-approximation algorithm for the Proper Interval
Vertex Deletion problem running in time O(n7).

Proof. Let G = (V,E) be a graph. We describe an O(n7) time procedure that
finds a set X ⊆ V such that G − X is a proper interval graph, and such that
|X| ≤ 6|Y | for any set Y ⊆ V such that G − Y is a proper interval graph.
Initially, the set X is empty. As long as there exists a vertex set U ⊆ V such
that G[U] is a claw, a net, a tent, a C4, a C5, or a C6, we delete all the vertices

22

of U from G, and add all the vertices of U to X. If no such vertex set U exists,
then the remaining graph G′ is an almost proper interval graph by definition.
Using the algorithm of Lemma 5, we can find a minimum hole cut X ′ of G′ in
O(n+m) time. Finally, we add all the vertices of X ′ to X. The approximation
factor 6 follows from the observation that each set U 6= X ′ whose vertices are
added to X contains at most 6 vertices, and that any hole cut Y of G must
contain at least one vertex from each such set U .

It remains to analyze the running time. Since each of the sets U that is found
in the first phase of the algorithm contains at most 6 vertices, each such set U
can be found in O(n6) time. As the algorithm finds O(n) sets U in total, the first
phase of the algorithm takes O(n7) time. The second phase of the algorithm, i.e.,
finding the hole cut X ′ of the almost proper interval graph G′, takes O(n+m)
time. This yields an overall running time of O(n7). ut

5 Conclusion

We proved that every {claw,net, tent, C4, C5, C6}-free graph is the disjoint union
of proper circular arc graphs. Using this structural result, we obtained an algo-
rithm for Proper Interval Vertex Deletion that runs in O(6kkn6) time,
as well as a polynomial-time 6-approximation algorithm for the optimization
variant of the problem.

Van Bevern et al. [1] proved that the Proper Interval Vertex Deletion
problem is NP-hard on graphs that are {claw,net, tent}-free. We showed that
the problem can be solved in linear time on almost proper interval graphs, i.e.,
on graphs that are {claw,net, tent, C4, C5, C6}-free. It would be interesting to
know if the problem remains NP-hard when restricted to {claw,net, tent, C4}-
free graphs, or if it becomes polynomial-time solvable on this graph class.

To conclude this paper, we mention two related open problems. Is the problem
of deciding whether at most k vertices can be deleted from a given graph in order
to get an interval graph or a proper circular arc graph fixed-parameter tractable
when parameterized by k? Settling the parameterized complexity of this problem
for interval graphs seems to be the more interesting of the two.

Acknowledgement: We would like to thank Fedor V. Fomin for comments and
suggestions on the manuscript and two anonymous referees for excellent reports,
which helped us to significantly improve the presentation of the paper.

References

1. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indif-
ference: unit interval vertex deletion. In: Proceedings WG 2010, Lecture Notes in
Computer Science, vol. 6410, pp. 232–243. Springer, Berlin (2010)

2. Brandstädt, A., Dragan, F.F.: On linear and circular structure of (claw, net)-free
graphs. Discrete Appl. Math. 129(2-3), 285–303 (2003).

23

3. Brandstädt A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA (1999)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures.
In: Proceedings SWAT 2010, Lecture Notes in Computer Science, vol. 6139, pp. 93–
104. Springer, Berlin (2010)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), 21:1–21:19 (2008)

7. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42), 3736–3756 (2010)

8. Courcelle, B.: Graph rewriting: an algebraic and logic approach. Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 193–
242 (1990)

9. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403
(1996)

10. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972)

11. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. Journal of Computational Biology 2(1), 139–152 (1995)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

13. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
In: Topics on Perfect Graphs (C. Berge, V. Chvátal, eds.), Annals of Discrete
Mathematics 21, pp. 325–356 (1984)

14. Heggernes, P., van ’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.V.: Param-
eterized complexity of vertex deletion into perfect graph classes. In: Proceedings
FCT 2011, Lecture Notes in Computer Science, vol. 6914, pp. 240–251 (2011)

15. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

16. Kawarabayashi, K., Reed, B.A.: Computing crossing number in linear time. In:
Proceedings STOC 2007, pp. 382–390, ACM (2007)

17. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fund. Math. 51, 45–64 (1962)

18. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

19. Lokshtanov, D.: Wheel-free deletion is W[2]-hard. In: Proceedings IWPEC 2008,
Lecture Notes in Computer Science, vol. 5018, pp. 141–147. Springer, Berlin (2008)

20. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–
768 (2010)

21. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica
62(3-4), 807–822 (2012)

22. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–
146. Academic Press (1969)

23. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

24. Tucker, A.: Structure theorems for some circular-arc graphs. Discrete Math. 7, 167
– 195 (1974)

24

25. Villanger, Y.V., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed
parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2009)

26. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn.
Ph.D. thesis, University of Göttingen (1967)

27. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)
28. Yannakakis, M.: Computing minimum fill-in is NP-complete. SIAM J. Alg. Disc.

Meth. 2(1), 77–79 (1981)

25

