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Daniël Paulusma3,†

1 Department of Informatics, University of Bergen, Norway
{remy.belmonte,pim.vanthof}@ii.uib.no
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Abstract. Let fvs(G) and cfvs(G) denote the cardinalities of a minimum feedback
vertex set and a minimum connected feedback vertex set of a graph G, respectively.
In general graphs, the ratio cfvs(G)/fvs(G) can be arbitrarily large. We study the
interdependence between fvs(G) and cfvs(G) in graph classes defined by excluding
one induced subgraph H. We show that the ratio cfvs(G)/fvs(G) is bounded by a
constant for every connected H-free graph G if and only if H is a linear forest. We
also determine exactly those graphs H for which there exists a constant cH such
that cfvs(G) ≤ fvs(G) + cH for every connected H-free graph G, as well as exactly
those graphs H for which we can take cH = 0.

1 Introduction

Numerous important graph parameters are defined as the cardinality of a smallest subset of
vertices satisfying a certain property. Well-known examples of such parameters include the
cardinality of a minimum vertex cover, a minimum dominating set, or a minimum feedback
vertex set in a graph. In many cases, requiring the subset of vertices to additionally induce
a connected subgraph defines a natural variant of the original parameter. The cardinality
of a minimum connected vertex cover or a minimum connected dominating set are just
two examples of such parameters that have received considerable interest from both the
algorithmic and structural graph theory communities. An interesting question is what effect
the additional connectivity constraint has on the value of the graph parameter in question.

One notable graph parameter that has been studied in this context is the vertex cover
number τ(G), defined as the cardinality of a minimum vertex cover of a graph G. The
connected variant of this parameter is the connected vertex cover number, denoted by τc(G)
and defined as the cardinality of a minimum connected vertex cover in G. The following
observation on the interdependence between τ(G) and τc(G) for connected graphs G is due
to Camby et al. [2].

Observation 1 ([2]) For every connected graph G, it holds that τc(G) ≤ 2 · τ(G)− 1.
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Given a graph class G, the worst-case ratio τc(G)/τ(G) over all connected graphs G in G is
defined to be the price of connectivity for vertex cover for the class G. Observation 1 implies
that for general graphs, the price of connectivity for vertex cover is upper bounded by 2,
and the class of all paths shows that the bound of 2 is asymptotically sharp [2]. Cardinal
and Levy [4], who coined the term “price of connectivity for vertex cover”, showed a
stronger upper bound of 2/(1 + ε) for graphs with average degree εn. Camby et al. [2]
provided forbidden induced subgraph characterizations of graph classes for which the price
of connectivity for vertex cover is upper bounded by t, for t ∈ {1, 4/3, 3/2}.

The above idea applies to other graph parameters as well. The following observation, due
to Duchet and Meyniel [5], shows the interdependence between the connected domination
number γc(G) and the domination number γ(G) of a connected graph G.

Observation 2 ([5]) For every connected graph G, it holds that γc(G) ≤ 3 · γ(G)− 2.

Adapting the terminology used above for vertex cover, Observation 2 implies that the price
of connectivity for dominating set on general graphs is upper bounded by 3. The class of
all paths again shows that this bound is asymptotically sharp. Zverovich [9] proved that
for any graph G, it holds that γc(H) = γ(H) for each connected induced subgraph H of
G if and only if G is (P5, C5)-free, that is, if and only if G does not contain an induced
subgraph isomorphic to P5 or C5. This implies that the price of connectivity for dominating
set is exactly 1 for the class of (P5, C5)-free graphs. Camby and Schaudt [3] proved that
γc(G) ≤ γ(G) + 1 for every connected (P6, C6)-free graph G, and showed that this bound
is best possible. They also obtained a sharp upper bound of 2 on the price of connectivity
for dominating set for (P8, C8)-free graphs, and showed that the general upper bound of 3
is asymptotically sharp for (P9, C9)-free graphs.

A feedback vertex set of a graph G is a set F of vertices such that deleting F makes G
acyclic, that is, the graph G−F is a forest. The cardinalities of a minimum feedback vertex
set and a minimum connected feedback vertex set of a graph G are denoted by fvs(G) and
cfvs(G), respectively. For any graph class G, we define the price of connectivity for feedback
vertex set to be the worst-case ratio cfvs(G)/fvs(G) over all connected graphs G in G. In
contrast to the aforementioned upper bounds of 2 and 3 on the price of connectivity for
vertex cover and dominating set, respectively, the price of connectivity for feedback vertex
is not upper bounded by a constant. Graphs consisting of two disjoint cycles that are
connected to each other by an arbitrarily long path show that the price of connectivity
for feedback vertex set is not even bounded by a constant for planar graphs. Interestingly,
Grigoriev and Sitters [6] showed that for planar graphs of minimum degree at least 3, the
price of connectivity for feedback vertex set is at most 11. This upper bound of 11 was
later improved to 5 by Schweitzer and Schweitzer [8], who also showed that this bound is
tight.

Our Results. We study the price of connectivity for feedback vertex set for graph classes
characterized by one forbidden induced subgraph H. A graph is called H-free if it does not
contain an induced subgraph isomorphic to H. We show that the price of connectivity for
feedback vertex set is bounded by a constant on the class of H-free graphs if and only if
H is a linear forest, that is, a forest of maximum degree at most 2. In fact, we obtain a
more refined tetrachotomy result on the interdependence between fvs(G) and cfvs(G) for
all connected H-free graphs G, depending on the structure of the graph H. In order to
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formally state our result, we need the following terminology. The disjoint union G+H of
two vertex-disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H) and edge
set E(G) ∪ E(H). We write sH to denote the disjoint union of s copies of H, and Pn to
denote the path on n vertices. A graph class G is called identical, additive, or multiplicative
if for all connected graphs G in G, it holds that cfvs(G) = fvs(G), cfvs(G) ≤ fvs(G) + c for
some constant c ≥ 0, or cfvs(G) ≤ d · fvs(G) for some constant d ≥ 0, respectively. Our
result can now be formulated as follows.

Theorem 1. Let H be a graph, and let G be the class of H-free graphs. Then it holds that

(i) G is multiplicative if and only if H is a linear forest;
(ii) G is additive if and only if H is an induced subgraph of P5 +sP1 or sP3 for some s ≥ 0;

(iii) G is identical if and only if H is an induced subgraph of P3.

A graph class G that is not multiplicative is said to be unbounded. If G is the class of
H-free graphs for some graph H, then Theorem 1 implies that G is unbounded if and only
if H contains a cycle or a vertex of degree at least 3.

2 The Proof of Theorem 1

Statements (i), (ii) and (iii) in Theorem 1 follow from Lemmas 1, 3 and 4 below, respectively.

Lemma 1. Let H be a graph. Then there is a constant dH such that cfvs(G) ≤ dH · fvs(G)
for every connected H-free graph G if and only if H is a linear forest.

Proof. First suppose H is a linear forest. Let G be an H-free graph. Note that G is P2|V (H)|-
free. Let F be a minimum feedback vertex set in G, and let v ∈ F . Let F ′ be the set obtained
from F by adding, for every vertex u ∈ F \{v}, all the vertices of a shortest path from u to
v in G. Since G is P2|V (H)|-free, we find that |F ′| ≤ 2|V (H)||F |. The set F ′ is a connected
feedback vertex set of G, so cfvs(G) ≤ |F ′| ≤ 2|V (H)| · fvs(G). This implies that we can
take dH = 2|V (H)|.

Before proving the reverse direction, we first introduce a family of graphs that will be
used later in the proof. Let Cn denote the cycle on n vertices. For any three integers i, j, k,
we define Bi,j,k to be the graph obtained from Ci +Cj by choosing a vertex x in Ci and a
vertex y in Cj , and adding a path of length k between x and y; if k = 0, then we simply
identify x and y. The graphs B5,9,4 and B3,3,0 are depicted in Figure 1. The graph B3,3,0

is called the butterfly.
Now suppose H is not a linear forest. We distinguish two cases. Suppose H contains

a cycle, and let C be a shortest cycle in H; in particular, C is an induced cycle. For
any integer `, the graph B` := B|V (C)|+1,|V (C)|+1,` is C-free and therefore H-free. The
observation that cfvs(B`) = fvs(B`) + ` − 1 for every ` ≥ 1 shows that no constant dH
exists as described in the lemma. If H does no contain a cycle, then H is a forest. For any
integer `, the graph B3,3,` is claw-free. Since we assumed that H is not a linear forest, B`

is also H-free. The observation that cfvs(B`) = fvs(B`) + ` − 1 for every ` ≥ 1 completes
the proof of Lemma 1. ut

Lemma 2 below exhibits a structural property of sP3-free graphs that will be used in the
proof of Lemma 3 below. The proof of Lemma 2 has been omitted due to page restrictions.
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Fig. 1. The graph B5,9,4 and the butterfly B3,3,0.

Lemma 2. For every integer s, there is a constant cs such that cfvs(G) ≤ fvs(G) + cs for
every connected sP3-free graph G.

Lemma 3. Let H be a graph. Then there is a constant cH such that cfvs(G) ≤ fvs(G)+cH
for every connected H-free graph G if and only if H is an induced subgraph of P5 + sP1 or
sP3 for some integer s.

Proof. First suppose H is an induced subgraph of P5. Let G be a connected H-free graph.
In particular, G is P5-free. Hence, due to a result by Bacsó and Tuza [1], there exists a
dominating set D ⊆ V (G) such that D is a clique or D induces a P3 in G. Let F be a
minimum feedback vertex set of G. Note that |D \F | ≤ 2 if D is a clique and |D \F | ≤ 3 if
D induces a P3. Since D is a connected dominating set in G, the set F ∪D is a connected
feedback vertex set of G of size at most |F |+ 3. Hence, we can take cH = 3.

Now suppose H is an induced subgraph of P5 + sP1 for some integer s. Let G be
a connected H-free graph. If G is P5-free, then we can take cH = 3 due to the above
arguments. Suppose G contains an induced path P on 5 vertices. Let S be a maximal
independent set in the graph obtained from G by deleting the five vertices of P as well
as all their neighbors in G. Since G is P5 + sP1-free, we know that |S| ≤ s − 1. Note
that V (P ) ∪ S is a dominating set of G. Hence, by Observation 2, there is a connected
dominating set D in G of size at most 3(|V (P ) ∪ S|)− 2 ≤ 3s+ 10. Let F be a minimum
feedback vertex set in G. Then F ∪ D is a connected feedback vertex set in G of size at
most |F |+ 3s+ 10. Hence, we can take cH = 3s+ 10.

If H is an induced subgraph of sP3 for some integer s, then the existence of a constant
cH as mentioned in Lemma 3 is guaranteed by Lemma 2.

It remains to show that if H is not an induced subgraph of P5 + sP1 or sP3 for any
integer s, then there is no constant cH such that cfvs(G)− fvs(G) + cH for every connected
H-free graph G. Let H be a graph that is not an induced subgraph of P5 + sP1 or sP3

for any integer s. First suppose H is not a linear forest. Then, by Lemma 1, there does
not exist a constant c such that cfvs(G) ≤ c · fvs(G) for every connected H-free graph
G. This implies that there cannot be a constant cH such that cfvs(G) ≤ fvs(G) + cH for
every connected H-free graph G. Finally, suppose H is a linear forest. Since H is not an
induced subgraph of P5 + sP1 or sP3 for any integer s, it contains P6 or P4 + P2 as an
induced subgraph. Consequently, the class of H-free graphs is a superclass of the class of
{P6, P4 +P2}-free graphs. Hence, in order to complete the proof of Lemma 3, it suffices to
show that if G is the class of {P6, P4 + P2}-free graphs, then there exists no constant cH
such that cfvs(G) ≤ fvs(G) + cH for every connected G ∈ G.
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Fig. 2. The graph Lk, defined for every k ≥ 1.

For every integer k ≥ 1, let Lk be the graph obtained from k disjoint copies of the
butterfly by adding a new vertex x that is made adjacent to all vertices of degree 2; see
Figure 2 for an illustration. For every k ≥ 1, the unique minimum feedback vertex set in Lk

is the set {x, y1, y2, . . . , yk}, so fvs(Lk) = k+1. Every minimum connected feedback vertex
set in Lk contains the set {x, y1, y2, . . . , yk}, as well as exactly one additional vertex for
each of the vertices yi to make this set connected. Hence, cfvs(Lk) = 2k+ 1 = fvs(Lk) + k.
The observation that Lk is {P6, P4 + P2}-free for every k ≥ 1 implies that if G is the class
of {P6, P4 +P2}-free graphs, then there exists no constant c such that cfvs(G) ≤ fvs(G)+ c
for every connected G ∈ G. ut

The proof of the next lemma has been omitted due to page restrictions.

Lemma 4. Let H be a graph. Then cfvs(G) = fvs(G) for every connected H-free graph G
if and only if H is an induced subgraph of P3.
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