
Computing role assignments of proper interval graphs in

polynomial time∗

Pinar Heggernes† Pim van ’t Hof† Daniël Paulusma‡

Abstract

An R-role assignment of a graph G is a locally surjective homomorphism from G to graph
R. For a fixed graph R, the R-Role Assignment problem is to decide, for an input graph
G, whether G has an R-role assignment. When both graphs G and R are given as input, the
problem is called Role Assignment. In this paper, we study the latter problem. It is known
that R-Role Assignment is NP-complete already when R is a path on three vertices. In
order to obtain polynomial time algorithms for Role Assignment, it is therefore necessary
to put restrictions on G. So far, the only known non-trivial case for which this problem is
solvable in polynomial time is when G is a tree. We present an algorithm that solves Role
Assignment in polynomial time when G is a proper interval graph. Thus we identify the
first graph class other than trees on which the problem is tractable. As a complementary
result, we show that Role Assignment is Graph Isomorphism-hard on chordal graphs,
a superclass of proper interval graphs and trees.

1 Introduction

Graph homomorphisms form a natural generalization of graph colorings: there is a homomor-
phism from a graph G to the complete graph on k vertices if and only if G is k-colorable. A
homomorphism from a graph G = (VG, EG) to a graph R = (VR, ER) is a mapping r : VG → VR

that maps adjacent vertices of G to adjacent vertices of R, i.e., r(u)r(v) ∈ ER whenever uv ∈ EG.
A homomorphism r from G to R is locally surjective if the following is true for every vertex u
of G: for every neighbor y of r(u) in R, there is at least one neighbor v of u in G with r(v) = y.
We also call such an r an R-role assignment. See Figure 1 for an example.

Role assignments originate in the theory of social behavior [7, 21]. A role graph R models
roles and their relationships, and for a given society we can ask if its individuals can be assigned
roles such that relationships are preserved: each person playing a particular role has among its
neighbors exactly the roles prescribed by the model. In this way, a large network of individuals
can be compressed into a smaller network that still gives some description of the large network.
Role assignments are also useful in the area of distributed computing, in which one of the
fundamental problems is to arrive at a final configuration where all processors have been assigned
∗This work has been supported by EPSRC (EP/D053633/1 and EP/G043434/1) and by the Research Council

of Norway. A preliminary version has been presented at IWOCA 2010 [15].
†Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Emails:

{pinar.heggernes, pim.vanthof}@ii.uib.no
‡School of Engineering and Computing Sciences, Durham University, Science Laboratories, South Road,

Durham DH1 3LE, England. Email: daniel.paulusma@durham.ac.uk

1

1
2

3

4

R

1
2

3

4
2

3

1 2

4

3

1

2 4 3

1

2 4
2

3

1

G

Figure 1: A graph R and a proper interval graph G with an R-role assignment.

unique identities. Chalopin et al. [4] show that, under a particular communication model, this
problem can be solved on a graph G representing the distributed system if and only if G has no
R-role assignment for any graph R with fewer vertices than G. Role assignments are useful in
topological graph theory as well, where a main question is which graphs G allow role assignments
to planar graphs R [23].

For a fixed graph R, the R-Role Assignment problem has as input a graph G, and asks
whether G has an R-role assignment. The Role Assignment problem has as input an or-
dered pair of graphs (G,R) and asks whether G has an R-role assignment. Both problems are
NP-complete; in fact R-Role Assignment is NP-complete on arbitrary graphs G, even when
R is any connected bipartite graph on at least three vertices [10]. Hence, for polynomial time
solvability of any of the problems, our only hope is to put restrictions on G. For Role Assign-
ment, so far, the only known non-trivial graph class that gives tractability is the class of trees:
Role Assignment is polynomial time solvable on input pairs (G,R) where G is a tree and R
is arbitrary [11]. Are there other graph classes on which Role Assignment can be solved in
polynomial time?

We show that Role Assignment can be solved in polynomial time on input pairs (G,R)
where G is a proper interval graph and R is arbitrary. Our algorithm runs in time O((n+m)·cR),
where n and m are the numbers of vertices and edges of G, respectively, and cR is the number
of connected components of R. Our work is motivated by the above question and continues the
research direction of Sheng [25], who characterizes proper interval graphs that have an R-role
assignment for some fixed role graph R with a small number of vertices. Proper interval graphs,
also known as unit interval graphs or indifference graphs, are widely known due to their many
theoretical and practical applications [3, 14, 24]. By our result, they form the first graph class
other than trees on which Role Assignment is shown to be polynomial time solvable. In order
to obtain our algorithm, we prove structural properties of clique paths of proper interval graphs
related to role assignments. This enables us to give an additional result, namely a polynomial
time algorithm for the problem of deciding whether there exists a graph R with fewer vertices
than a given proper interval graph G such that G has an R-role assignment. As we mentioned
earlier, this problem stems from the area of distributed computing [4]. It is co-NP-complete in
general [5]. Finally, to indicate that Role Assignment might remain hard on larger graph
classes, we show that it is Graph Isomorphism-hard for input pairs (G,R) where G belongs
to the class of chordal graphs, a superclass of both proper interval graphs and trees.

2 Preliminaries

All graphs considered in this paper are undirected, finite and simple, i.e., without loops or
multiple edges. A graph is denoted G = (VG, EG), where VG is the set of vertices and EG is

2

the set of edges. We use n to denote the number of vertices and m to denote the number of
edges of G. For a vertex u of G, NG(u) = {v | uv ∈ EG} denotes the set of neighbors of u in
G, also called the neighborhood of u. The degree of a vertex u in G is degG(u) = |NG(u)|. A
graph H = (VH , EH) is a subgraph of G if VH ⊆ VG and EH ⊆ EG. For U ⊆ VG, the graph
G[U] = (U, {uv ∈ EG | u, v ∈ U}) is called the subgraph of G induced by U . A graph is complete
if it has an edge between every pair of vertices. A set of vertices A ⊆ VG is a clique if G[A] is
complete. A clique is maximal if it is not a proper subset of any other clique.

An isomorphism from a graph G to a graph H is a bijective mapping f : VG → VH such that
for any two vertices u, v ∈ EG, we have uv ∈ EG if and only if f(u)f(v) ∈ EH . If there exists
an isomorphism from G to H, then we say that G is isomorphic to H, and we write G ' H.

Let u and v be two vertices of a graph G. A path between u and v is a sequence of distinct
vertices P = u1u2 · · ·up starting at u1 = u and ending at up = v, where uiui+1 is an edge of G
for every i = 1, . . . , p − 1. If uv is an edge as well we obtain a cycle. If G contains no edges
between non-consecutive vertices of P then we say that P is an induced path or induced cycle
in G. Sometimes we fix an orientation of P . In that case we write ui

−→
P uj = uiui+1 · · ·uj and

uj
←−
P ui = ujuj−1 · · ·ui to denote the subpath from ui to uj , or from uj to ui, respectively. The

length of a path or cycle is its number of edges. The set of vertices of a path or cycle P is
denoted by VP . A graph is connected if there is a path between every pair of vertices, and a
graph is disconnected if it is not connected. A connected component of G is a maximal connected
subgraph of G.

Let A1, . . . , Ap be a sequence of sets. For i = 1, . . . , p, we use shorthand notation A≤i =
A1 ∪ · · · ∪Ai and A≥i = Ai ∪ · · · ∪Ap.

2.1 Chordal, Interval, and Proper Interval Graphs

A graph isomorphic to the graph K1,3 = ({a, b1, b2, b3}, {ab1, ab2, ab3}) is called a claw with
center a and leaves b1, b2, b3. A graph is called claw-free if it does not contain an induced subgraph
isomorphic to a claw. An asteroidal triple (AT) in a graph G is a set of three mutually non-
adjacent vertices u1, u2, u3 such that G contains a path Pij from ui to uj with Pij ∩NG(uk) = ∅
for all distinct i, j, k ∈ {1, 2, 3}. A graph is called AT-free if it does not have an AT.

A graph is chordal if it contains no induced cycle of length at least 4. A chordal graph has
at most n maximal cliques [12]. A graph is an interval graph if intervals of the real line can
be associated with its vertices in such a way that two vertices are adjacent if and only if their
corresponding intervals overlap. Interval graphs are a subclass of chordal graphs: a chordal graph
is an interval graph if and only if it is AT-free [18]. In addition, the following characterization of
interval graphs in terms of forbidden induced subgraphs is due to Lekkerkerker and Boland [18].

Theorem 2.1 ([18]). A chordal graph is an interval graph if and only if it does not contain any
of the graphs depicted in Figure 2 as an induced subgraph.

Since we use the forbidden subgraph characterization of Theorem 2.1 in the proof of our
first result, we give an exact description of the forbidden induced subgraphs. The graph F1 is
obtained from a claw by subdividing each of its edges exactly once, i.e., F1 is the graph with
vertices x, y1, y2, y3, z1, z2, z3, and edges xy1, y1z1, xy2, y2z2, xy3, y3z3. The graph F2 is obtained
from a cycle x1 · · ·x6x1 by adding the edges x1x3, x3x5, x3x6, as well as a new vertex y and the
edge x6y. For every k ≥ 4, F k

3 is the graph obtained from a path x1 · · ·xk by adding two new
vertices y, z and the edge yz, as well as the edges xiy for i = 2, . . . , k − 1. Finally, for every

3

z3 y3 x y2 z2

y1

z1

F1

y

x1 x6 x5

x2 x3 x4

F2

z

y

x1 x2 x3 xk−1 xk

F k
3 , k ≥ 4

z′

y z

x1 x2 xk−1 xk

F k
4 , k ≥ 3

Figure 2: A chordal graph that is not interval contains one of these graphs as an induced
subgraph.

k ≥ 3, F k
4 is the graph obtained from a cycle x1 · · ·xkzyx1 by adding the edges xiy and xiz for

i = 2, . . . k − 1, as well as adding a new vertex z′ and the edges yz′ and zz′.
The following characterization of interval graphs is also well known and plays a central role

in our results. A connected graph G with p maximal cliques is an interval graph if and only if
there is an ordering K1, . . . ,Kp of the maximal cliques of G, such that for each vertex v of G,
the maximal cliques containing v appear consecutively in the ordering. A path P = K1 · · ·Kp

following such an ordering is called a clique path of G. By definition, for every vertex v of G,
the maximal cliques containing v form a connected subpath in P . In this context, the maximal
cliques of G are also called the bags1 of P . A clique path of G has at most n bags and can be
constructed in O(n+m) time (see e.g. [12]).

Given a clique path P = K1 · · ·Kp of an interval graph G, we say that Ki is the first bag in
which a vertex u of G appears if u ∈ Ki for i = 1 or u ∈ Ki \Ki−1 for some i ≥ 2. In the latter
case, by the definition of a clique path, u is not in a bag Kh with h ≤ i− 1. If u ∈ Ki for i = p
or u ∈ Ki \Ki+1 for some i ≤ p− 1, then we say that Ki is the last bag in which u appears. In
the latter case, u is not in a bag Kh with h ≥ i+ 1, again by the definition of a clique path. We
denote the index of the first bag of P in which u appears by fP (u) and the index of the last bag
in which u appears by lP (u). Because bags of P correspond to maximal cliques, every bag Ki

has the property that i = fP (u) for at least one vertex u, and i = lP (v) for at least one vertex
v. Because G is connected, we also observe that each bag Ki contains at least one vertex from
Ki−1 for i = 2, . . . , p. Note that, by the definition of a clique path, K≤i ∩Ki+1 = Ki ∩Ki+1,
and Ki+1 \K≤i = Ki+1 \Ki for i = 1, . . . , p− 1.

An interval graph is proper interval if it has an interval representation in which no interval is
properly contained in any other interval. An interval graph is a proper interval graph if and only
if it is claw-free [24]. Equivalently, a chordal graph is a proper interval graph if and only if it is
AT-free and claw-free. Chordal graphs, interval graphs, and proper interval graphs can all be
recognized in O(n+m) time (see e.g. [3, 14]). Given a clique path P of an interval graph G and
two vertices u and v of G, we say that u transcends v in P if fP (u) ≤ fP (v) and lP (u) > lP (v).
The following theorem will be used heavily in our proofs.

Theorem 2.2 ([16]). A connected chordal graph is a proper interval graph if and only if it has
a unique clique path P , and no vertex transcends any other vertex in P .

Two adjacent vertices u and v of a graph G are twins if NG(u) ∪ {u} = NG(v) ∪ {v}. Let
G be a connected proper interval graph with clique path P = K1 · · ·Kp. Note that two vertices

1The term bag comes from tree and path decompositions. A clique path is a path decomposition where each
bag is a maximal clique.

4

u and v of G are twins if and only if fP (u) = fP (v) and lP (u) = lP (v). We partition VG into
sets of twins. A vertex that has no twin appears in its twin set alone. We order the twin sets
with respect to P , and label them T1, . . . , Ts, in such a way that i < j if and only if for all
u ∈ Ti, v ∈ Tj , either fP (u) < fP (v), or fP (u) = fP (v) and lP (u) < lP (v). We call T1, . . . , Ts

the ordered twin sets of G. The ordered twin sets of G can be computed in O(n + m) time
during the computation of the clique path. The following observation immediately follows from
the definition of ordered twin sets and the definition of a clique path. Hence, this observation is
even valid for interval graphs that are not proper.

Observation 2.3. Let G be a connected proper interval graph with clique path P = K1 · · ·Kp

and ordered twin sets T1, . . . , Ts. Then, for h = 1, . . . , s − 1, there exists a bag that contains
twin sets Th and Th+1. Furthermore, if a bag contains twin sets Tb and Tc with b < c, then it
contains twin sets Tb+1, . . . , Tc−1 as well.

2.2 Role Assignments

If r is a homomorphism from G to R and U ⊆ VG, then we write r(U) = {r(u) | u ∈ U}.
Recall that r is an R-role assignment of G if r(NG(u)) = NR(r(u)) for every vertex u of G.
Graph R is called a role graph and its vertices are called roles. For a subset X of VR, we write
r−1(X) = {u ∈ VG | r(u) ∈ X}. If X = {x}, we simply write r−1(x) instead of r−1({x}). Let
R′ be a subgraph of R. Then G[r−1(VR′)] is the preimage of R′ in G. We frequently make use
of the following two known results.

Observation 2.4 ([10]). Let G be a graph and let R be a connected graph such that G has an
R-role assignment. Then each vertex x ∈ VR appears as a role of some vertex u ∈ VG, i.e., for
each vertex x ∈ VR there exists a vertex u ∈ VG such that r(u) = x. Furthermore, if |VG| = |VR|
then G ' R.

Lemma 2.5 ([10]). Let G and R be two graphs such that G has an R-role assignment r, and
let x1 · · ·x` be a path in R. Then for each u ∈ VG with r(u) = x1 there exists a path u1 · · ·u` in
G, such that u = u1 and r(ui) = xi for i = 1, . . . , `.

Our first result, given in Theorem 2.6, shows that chordal graphs, interval graphs, and proper
interval graphs are closed under role assignments. We need this result in Section 3.

Theorem 2.6. Let G be a graph and let R be a connected graph such that G has an R-role
assignment.

(i) If G is a chordal graph, then R is a chordal graph.

(ii) If G is an interval graph, then R is an interval graph.

(iii) If G is a proper interval graph, then R is a proper interval graph.

Proof. Let r be an R-role assignment of G. If G is disconnected then clearly the restriction of r
to each connected component G′ of G is an R-role assignment of G′. Hence it suffices to show
the result on a connected graph G. Before we proceed with the proof of the theorem, we observe
first that, due to Lemma 2.5 and since adjacent vertices of G cannot have non-adjacent roles in
R, the preimage of an induced cycle C in R contains an induced cycle of length at least |VC |
and the preimage of an (induced) tree T contains an (induced) tree isomorphic to T .

5

Proof of (i). Suppose G is chordal. If R is not chordal then R contains an induced cycle C of
length at least four. By the observation above, the preimage of C in G contains an induced
cycle of length at least four. This contradicts the assumption that G is chordal, so R must be
chordal.

Proof of (ii). Suppose G is an interval graph. Then G is chordal and from (i) we know that R
is chordal. Assume for contradiction that R is not an interval graph. Then by Theorem 2.1, R
contains one of the graphs F1, F2, F k

3 , or F k
4 , shown in Figure 2, as an induced subgraph.

Case 1: R contains F1 as an induced subgraph.
Then, by the observation in the beginning of the proof, we find that G contains an induced F1.
Since G is an interval graph, this is not possible. Hence R does not contain F1 as an induced
subgraph.
Case 2: R contains F2 as an induced subgraph.
Let u be a vertex of G with role x6. Then, by repeatedly applying Lemma 2.5 with respect to
the paths x6x5 · · ·x1 and x1x6 and the fact that G is finite, we find that u is on a cycle D in G of
length 6d for some d ≥ 1 such that the vertices of D have roles in repeated order x6, x5, . . . , x1.
Note that D does not have to be an induced cycle of G. Also, u has a neighbor v in G with
role y. Let s, s′, t, t′ be four vertices on D such that ss′ut′t forms a subpath of D and r(s) = x2,
r(s′) = x1, r(t) = x4 and r(t′) = x5. Since D is a cycle, we can take a shortest path Pst in G[VD]
from s to t not passing through a vertex from {s′, t′, u}. Suppose Pst contains a neighbor u′ of
v. If v has more than one neighbor on Pst, then we choose u′ to be the one closest to s on Pst.
Vertex u′ must have role x6. Now we have a cycle D′ = u′vus′s

−→
Pstu

′, which is not necessarily
induced. However, since we took Pst to be shortest and we took u′ to be closest to s, the only
chords possible on D′ are incident to u or s′.

Suppose u has a neighbor w on D′ such that w /∈ {s′, v}. Assume that w is chosen closest to
u′. Because u and u′ have the same role, namely role x6, we find that u and u′ are not adjacent.
This means that w 6= u′. Then the cycle u′vuw

−→
Pstu

′ is an induced cycle on at least four vertices.
This is not possible, because G is chordal. Hence, the only neighbors of u on D′ are s′ and v.

Suppose s′ has a neighbor w′ on D′ such that w′ /∈ {s, u}. Assume that w′ is chosen closest
to u′ (with possibly w′ = u′). Then the cycle u′vus′w′

−→
Pstu

′ is an induced cycle on at least four
vertices. This is not possible, because G is chordal. Hence, the only neighbors of s′ on D′ are s
and u.

From the above we find that D′ is induced. Since D′ contains at least five vertices and G is
chordal, this is not possible. We conclude that Pst does not contain any neighbor of v. Then,
due to the paths Pst, ss′uv and tt′uv, we find that {s, t, v} forms an AT. This is not possible,
because G is AT-free. Hence R does not contain an induced F2.

Case 3: R contains an induced F k
3 for some k ≥ 4.

Let t2 be a vertex of G with role x2. By repeatedly applying Lemma 2.5 with respect to the
paths x2x3y and yx2 and the fact that G is finite and chordal, we may assume without loss of
generality that t2 belongs to a triangle together with two vertices t3 and u with roles x3 and y,
respectively. Let v be a neighbor of u with role z. Let t1 be a neighbor of t2 with role x1. We
apply Lemma 2.5 to find a path t3 · · · tk in G such that r(ti) = xi for i = 3, . . . , k. We consider
the paths t1 · · · tk, t1t2uv and tk · · · t3uv in order to find that {t1, tk, v} is an AT in G; recall that
the roles x1, . . . , xk, y, z form an induced F k

3 in R. Because G is AT-free, this is not possible.
Hence R does not contain an induced F k

3 .

6

Case 4. R contains an induced F k
4 for some k ≥ 3.

Consider the cycle yzz′y in F k
4 . By using the same arguments as in Case 3, we find that G has

three vertices u, v, w with roles y, z, z′, respectively, that form a triangle. By using the same
arguments as in Case 2, we also deduce that uv is an edge of a cycle D of G of length d(k+2) for
some d ≥ 1 such that the vertices of D have roles in repeated order z, y, x1, . . . , xk. Suppose that
we chose u, v, w and D such that d is minimal over all triangles uvwu with r(u) = y, r(v) = z
and r(w) = z′. Note that D does not have to be an induced cycle of G.

Let s and t be the two vertices such that suvt forms a subpath of D; note that r(s) = x1

and r(t) = xk. Since D is a cycle, we can take a shortest path Pst in G[VD] from s to t not
using edge uv. Note that Pst is an induced path in G. Suppose Pst contains a neighbor u′ of w.
Note that u′ /∈ {u, v} because u and v are not on Pst by definition. Also, w is not adjacent to s
because r(s) = x1 and r(w) = z′ are not adjacent in R. Hence, u′ can be chosen in such a way
that u′ is the only vertex on s

−→
Pstu

′ that is adjacent to w. Because u′ is adjacent to w and w has
role z′, we find that u′ must have role y or z. We consider each case.

Suppose r(u′) = y. Then u and u′ have the same role. Consequently, u and u′ are not
adjacent. Let v′ be the neighbor of u on s

−→
Pstu

′ that is closest to u′. Because u′ and u are not
adjacent, we find that v′ 6= u′. Recall that u′ is the only vertex on s

−→
Pstu

′ that is adjacent to w,
and that Pst is an induced path in G. We then find that the cycle uv′

−→
Pstu

′wu is a induced cycle
on at least four vertices. This is not possible, because G is chordal. Hence r(u′) 6= y.

Suppose r(u′) = z. If uu′ is an edge then we could take a shorter cycle D′ of length d′(k+ 2)
with d′ < d, and d would not be minimal. Hence uu′ is not an edge. This means we can apply
the same arguments as in the previous case, which leads us to conclude that r(u′) 6= z. Because
r(u′) ∈ {y, z}, we get a contradiction. We conclude that Pst does not contain any neighbor of
w.

If we consider the paths Pst, suw, and tvw, then we find that {s, t, w} forms an AT in
G. This is not possible, because G is an interval graph. Consequently, R does not contain an
induced F k

4 .

We have shown that R, which is chordal, does not contain any of the graphs F1, F2, F k
3 , or F k

4

as an induced subgraph. By Theorem 2.1, R is an interval graph.

Proof of (iii). Suppose G is a proper interval graph. Then G is interval, and from (ii) we have
that R is an interval graph. If R has a claw as an induced subgraph then, by the observation
in the beginning of the proof, its preimage in G contains a claw as an induced subgraph as
well. Since G is proper interval and does therefore not contain a claw, R does not contain a
claw either. Consequently, R is interval and claw-free, which means that R is a proper interval
graph.

Note that, for each of the three statements in Theorem 2.6, the reverse implication does not
hold. In order to see this, let G be an induced cycle of length 6, and let R be a cycle of length 3.

3 Role Assignments on Proper Interval Graphs

We start with the following key result. Note that this result is easy to verify for paths.

Theorem 3.1. Let G and R be two connected proper interval graphs such that G has an R-role
assignment r. Let P = K1 · · ·Kp and P ′ = L1 · · ·Lq be the clique paths of G and R, respectively.
Then r(Ki) = Li for i = 1, . . . , q, or r(Ki) = Lq−i+1 for i = 1, . . . q.

7

Proof. Let G and R be two connected proper interval graphs such that G has an R-role assign-
ment r. Let P and P ′ be the clique paths of G and R, respectively. Let P = K1 · · ·Kp, and
let P ′ = L1 · · ·Lq. We will prove that r(Ki) = Li for i = 1, . . . , q, or that r(Ki) = Lq−i+1 for
i = 1, . . . , q. We use induction on q.

Let q = 1. We apply the definition of a role assignment on the vertices in K1 \K2 and find
that r(K1) = L1 or r(K1) = Lq.

Let q ≥ 2. First suppose r(K1) = L1. Let R′ be the graph obtained from R after removing
every vertex in Lq \ Lq−1. Let G′ be the graph obtained from G after removing every vertex
with role in Lq \ Lq−1. Because q ≥ 2 and r(K1) = L1, we have not removed any vertex from
K1. Let F be the connected component of G′ that contains K1. Then the restriction r′ of r to
VF is an R′-role assignment of F .

Let P ∗ = J1 · · · Js be the clique path of F . Because K1 is an end bag of P , we find that
J1 = K1 or Js = K1, say J1 = K1. Note that L1 · · ·Lq−1 is the clique path of R′. Then, by
the induction hypothesis, r′(Ji) = Li for i = 1, . . . , q − 1, or r′(Ji) = Lq−i for i = 1, . . . , q − 1.
Because r(K1) = L1 and J1 = K1, we find that r′(Ji) = Li for i = 1, . . . , q − 1.

Consider a bag Li for an arbitrary i ≤ q − 1. By definition, Li contains a vertex x that is
not in Li+1. Hence, x is not adjacent to any vertex in Lq \ Lq−1. Consequently, the vertex in
Ji with role x is not adjacent to a vertex in G with role in Lq \ Lq−1. This means that Ji is a
maximal clique in G.

Because F has a unique clique path, the maximal cliques of F appear in order J1, . . . , Js

in P . No bag Kh of P is positioned between two bags Ji and Ji+1 for some 1 ≤ i ≤ s − 1,
because then Kh ⊆ Ji or the vertices in Ji ∩ Ji+1 transcend some vertex in Kh. The first case
is not possible because Kh is a maximal clique of G. The second case is not possible due to
Theorem 2.2. Recall that K1 = J1. Then, for i = 1, . . . , q − 1, we find that Ki = Ji, and
consequently, r(Ki) = r(Ji) = Li. As a result, all vertices in Kq−1 with role in Lq−1 ∩ Lq are in
Kq, because they must have their required neighbors with roles in Lq \ Lq−1 in K≥q.

We will now show that Kq contains no vertex with role in L≤q−1 \ Lq. In order to derive a
contradiction, suppose Kq contains a vertex u with role in L≤q−1 \Lq. Let v ∈ Kq−1 have a role
in Lq−1 ∩ Lq. We deduced above that v ∈ Kq.

First suppose fP (u) = q. Because u has a role in L≤q−1 \ Lq, we find that u cannot be in a
bag with a vertex that has a role in Lq \ Lq−1. Hence lP (u) < lP (v). Because fP (v) ≤ q − 1 <
q = fP (u), we find that v transcends u. This is not possible by Theorem 2.2. Now suppose
fP (u) ≤ q− 1. Let u′ be a vertex in Kq \Kq−1. Then u′ cannot have a role in Lq \Lq−1 because
u′ is adjacent to u. Hence, the role of u′ is in L≤q−1 \ Lq, and we apply the arguments of the
previous case with respect to u′ instead of u to derive the same contradiction. We conclude that
Kq contains no vertex with role in L≤q−1 \ Lq.

Because Kq contains no vertex with role in L≤q−1 \Lq, we find that r(Kq) ⊆ Lq. If r(Kq) ⊂
Lq, then all the vertices of Kq must belong to Kq+1, because they all still need the vertices with
roles in Lq \ r(Kq) in their neighborhood. Then Kq would not be maximal. This is not possible.
Hence, r(Kq) = Lq, as desired.

If r(K1) = Lq then we find that r(Ki) = Lq−i+1 for i = 1, . . . , q by exactly the same
arguments. This finishes the proof of Theorem 3.1.

Note that Theorem 3.1 is not valid for interval graphs, which can be seen with the following
example. Let G be the path u1u2u3u4 to which we add a vertex u5 with edge u2u5 and a vertex
u6 with edge u3u6. Let P = K1 · · ·K5 be a clique path of G with K1 = {u1, u2}, K2 = {u2, u5},

8

K3 = {u2, u3}, K4 = {u3, u6} and K5 = {u3, u4}. Let R be the 4-vertex path 1234. The unique
clique path of R is P ′ = L1L2L3 with L1 = {1, 2}, L2 = {2, 3} and L3 = {3, 4}. However,
we find that G has an R-role assignment r with r(u1) = r(u5) = 1, r(u2) = 2, r(u3) = 3, and
r(u4) = r(u6) = 4.

Also note that we can apply Theorem 3.1 twice depending on the way the bags in the clique
path of the proper interval graph G are ordered. Recall that the clique path of a proper interval
graph is unique up to reversal. This leads to a rather surprising corollary that might be of
independent interest.

Corollary 3.2. Let G be a connected proper interval graph with clique path P = K1 · · ·Kp,
and let R be a connected graph. If G has an R-role assignment, then R ' G[K≤i] and R '
G[K≥p−i+1] for some 1 ≤ i ≤ p.

As an illustration of Corollary 3.2 we have indicated the two copies of R in G with bold
edges in Figure 1. Due to Theorem 2.6 we do not need to restrict R to be a proper interval
graph in the statement of the above corollary. Hence for any two connected graphs G and R,
where G is proper interval with |VG| > |VR|, if G has an R-role assignment then G contains two
(not necessarily vertex-disjoint) induced subgraphs isomorphic to R.

Theorem 3.1 only shows what an R-role assignment r of a proper interval graph G looks like
at the beginning and end of the clique path of G. To derive our algorithm, we need to know
the behavior of r in the middle bags as well. We therefore give the following result, which is
valid when R has at least three maximal cliques and the number of maximal cliques in G is not
too small. The special cases when R has just one or two maximal cliques or G has only a few
maximal cliques will be dealt with separately in the proof of Theorem 3.5.

Lemma 3.3. Let G be a connected proper interval graph with clique path P = K1 · · ·Kp. Let
R be a connected proper interval graph with clique path P ′ = L1 · · ·Lq and ordered twin sets
X1, . . . , Xt. Let r be an R-role assignment of G with r(Kq) = Lq. Let T be the subset of Kq

that consists of all vertices with roles in Xt. Then the following holds if q ≥ 3 and p ≥ 2q + 1.

(i) If there is a vertex in T not in Kq+1, then there exists an index i ≥ q + 1 such that
K≥q+1 \Kq ⊆ K≥i and the restriction of r to K≥i is an R-role assignment of G[K≥i] with
r(Ki) = Lq. Furthermore, if i > q + 1 then r(Kh) ⊆ Xt for h = q + 1, . . . , i− 1.

(ii) If all vertices in T are in Kq+1, then there exists an index i ≥ q+1 such that T = Ki−1∩Ki

and T ∩Ki+1 = ∅, and the restriction of r to K≥i is an R-role assignment of G[K≥i] with
r(Ki) = Lq.

Proof. Note that t ≥ 6 because q ≥ 3. We also observe that the restriction of r to K≤q is an
R-role assignment by Theorem 3.1.

Proof of (i). Suppose u ∈ T is not in Kq+1. Choose i ≥ q+ 1 to be the smallest index such that
|Ki| ≥ |Lq|. Hence, if i > q + 1 then |Kh| < |Lq| for q + 1 ≤ h ≤ i− 1. Note that such an index
i exists, because p− q + 1 ≥ 2q + 1− q + 1 ≥ q + 2 and either r(Kp−q+1) = Lq or r(Kp) = Lq,
due to Theorem 3.1.

We first show that if i > q + 1 then r(Kh) ⊆ Xt for q + 1 ≤ h ≤ i− 1. In order to derive a
contradiction, suppose there exists an index h′ with q + 1 ≤ h′ ≤ i− 1 such that Kh′ contains a
vertex with role in X≤t−1. Choose h′ in such a way that r(Kh) ⊆ Xt for q + 1 ≤ h ≤ h′ − 1.

9

Claim 1. fP (v) = h′ for all v ∈ Kh′ with r(v) ∈ X≤t−1.

We prove Claim 1 as follows. Let v ∈ Kh′ with r(v) ∈ X≤t−1. First suppose v ∈ K≤q. Since
r(v) ∈ X≤t−1, we find that r(v) is adjacent to some vertex in X≤t−1 to which r(u) is not adjacent,
i.e., fP ′(r(v)) < fP ′(r(u)) = q. By Theorem 3.1 and our assumption that r(Kq) = Lq, we have
r(Ka) = La for a = 1, . . . , q. Hence, fP (v) < fP (u). Since lP (u) = q and lP (v) ≥ q + 1, this
means that v transcends u. This is not possible due to Theorem 2.2. We conclude that v does
not appear in K≤q. By our choice of h′, we then find that v is in Kh′ \K≤h′−1, so fP (v) = h′

indeed. This completes the proof of Claim 1.
We claim that Kh′ contains a vertex with role in Xt. If h′ ≥ q + 2 then this claim follows from
the definition of a clique path, which implies that Kh′−1 ∩Kh′ 6= ∅, and our choice of h′, which
implies r(Kh′−1) ⊆ Xt. Suppose h′ = q + 1. If all vertices of T are not in Kq+1, then there
must be a vertex v∗ ∈ Kq+1 ∩Kq with role in X≤t−1. Then fP (v∗) ≤ q ≤ h′ − 1 and this is not
possible due to Claim 1. Hence, indeed, Kh′ contains a vertex with role in Xt. Consequently,
we find that r(Kh′) ⊂ Lq.

By the definition of a clique path, Kh′ \ Kh′+1 6= ∅. Let u′ ∈ Kh′ \ Kh′+1, so lP (u′) = h′.
We claim that r(u′) ∈ Xt. If not, then r(u′) ∈ X≤t−1, and consequently, fP (u′) = h′ by Claim
1. However, we have r(Kh′) ⊂ Lq and |Kh′ | < |Lq|. This, together with fP (u′) = lP (u′) = h′,
implies that u′ misses at least one role of Lq in its neighborhood. This is not possible. Hence,
r(u′) ∈ Xt indeed. We need this vertex u′ in the proof of the following claim, and also in the
rest of the proof.

Claim 2. There exists a vertex in Kh′ with role in Xt−1.

We prove Claim 2 as follows. In order to derive a contradiction, suppose there is no vertex
in Kh′ with role in Xt−1. Let v∗ be a vertex in Kh′ with r(v∗) ∈ X≤t−1. Then we find that
r(v∗) ∈ X≤t−2. Let s be a neighbor of v∗ with role in Xt−1. Because fP (v∗) = h′ by Claim 1
and s /∈ Kh′ , we find that lP (v∗) ≥ h′ + 1 and fP (s) ≥ h′ + 1. Since r(v∗) belongs to X≤t−2,
and r(s) and r(u′) are both in X≥t−1, there exists a neighbor v′ of v∗ with r(v′) adjacent to
neither r(u′) nor r(s) in R. Hence v′ is adjacent to neither u′ nor s in G. Since lP (u′) = h′ and
fP (s) ≥ h′ + 1, we find that u′ and s are not adjacent. However, then G has an induced claw
with center v∗ and leaves s, u′, v′, which contradicts the assumption that G is a proper interval
graph. Hence we have proven Claim 2.
By Claim 2, there exists a vertex v ∈ Kh′ with r(v) ∈ Xt−1. Because |Kh′ | < |Lq|, there exists
a role x ∈ Lq that is not in r(Kh′). This means that v is in Kh′+1; otherwise v will not get its
required neighbor with role x. Let w be this neighbor, so r(w) = x.

Claim 3. There is no neighbor s of v that has fP (s) ≥ h′ + 1 and r(s) ∈ Xt.

We prove Claim 3 as follows. Suppose v is adjacent to such a vertex s. Then, since r(v) belongs
to X≤t−1, and r(s) and r(u′) are both in Xt, there exists a neighbor v′ of v with r(v′) adjacent
to neither r(u′) nor r(s). Hence v′ is adjacent to neither u′ nor s. Since lP (u′) = h′ and
fP (s) ≥ h′ + 1, we find that u′ and s are not adjacent. However, then G has an induced claw
with center v and leaves s, u′, v′, which contradicts the assumption that G is a proper interval
graph. Hence we have proven Claim 3.
Claim 3 implies that x ∈ X≤t−1, because v is adjacent to w with fP (w) ≥ h′ + 1 and r(w) = x.
Let z` ∈ X1 and let Q′ = z1 · · · z`, with x = z1, be a shortest path in R from x to a role z` ∈ X1.
By Lemma 2.5 we find that G contains a path Q = t1 · · · t` with t1 = w such that r(ti) = zi

10

for i = 1, . . . , `. Because Q′ is shortest, we find that t2
−→
Qt` contains no vertex with role in Lq.

Because Kh′ only contains vertices with roles in Lq and w /∈ Kh′ , this implies that fP (ti) ≥ h′+1
for i = 1, . . . , `.

Because w has role x and x ∈ Lq, we find that all roles of Xt appear as roles of neighbors
of w. Because r(u′) ∈ Xt, this means that w has a neighbor w′ with r(w′) = r(u′). Note that
fP (w′) ≥ h′ + 1, because fP (w) ≥ h′ + 1. Because lP (u′) = h′, this implies that u′ and w′ are
two different vertices that are not adjacent.

We claim that ` ≥ 3. In order to see this, we first observe that v is not adjacent to a vertex
with role in X1. This is because r(v) ∈ Xt−1 is already adjacent to a role in Xt, namely r(u′),
and then q = 2, whereas we assumed that q ≥ 3. Suppose ` = 1. Then x = z1 ∈ X1, and v
is adjacent to a vertex, namely w, with role r(w) = x ∈ X1. This is not possible, as we just
observed. Suppose ` = 2. Then r(t2) = z2 ∈ X1, and we find that v is not adjacent to t2, again
due to the above observation. Since r(w′) ∈ Xt, we also find that t2 and w′ are not adjacent.
By Claim 3, v and w′ are not adjacent. Then G has an induced claw with center w and leaves
v, w′, t2, which contradicts the assumption that G is a proper interval graph. So, ` ≥ 3 indeed.

We claim that t`, u′, w′ form an AT in order to get a contradiction (recall that a proper
interval graph is AT-free). To show this we first prove that t`, u′, w′ are three different vertices
that are pairwise non-adjacent. We already deduced that u′ and w′ are two different non-adjacent
vertices. Because lP (u′) = h′ and fP (t`) ≥ h′ + 1, we also find that u′ and t` are two different
non-adjacent vertices. As t > 1, vertices t` and w′ with roles in X1 and Xt, respectively, are
different and non-adjacent.

Since Q′ is a shortest path in R from x to a vertex in X1, we find that Q neither contains v
nor w′, because these vertices have a role in Lq. Recall that w′ has a role in Xt and that w, the
first vertex of Q, has role in X≤t−1. Then we can also use the fact that Q′ is a shortest path to
deduce that w′ has no neighbor on t2

−→
Qt`.

In order to have a path from u′ to t`, we claim that v is adjacent to t2. Suppose not. By
Claim 3, we find that v and w′ are not adjacent. Since w′ has no neighbor on t2

−→
Qt`, vertices

t2 and w′ are not adjacent. However, then G has an induced claw with center w and leaves
t2, v, w

′, which contradicts the assumption that G is a proper interval graph. Hence, v and t2
are adjacent. This implies that G indeed contains such a path, namely the path u′vt2

−→
Qt`.

We consider the three paths u′vww′, u′vt2
−→
Qt` and w′w

−→
Qt`. In order to finish our claim

that {t`, u′, w′} is an AT, we show that t` has no neighbor on vw, that u′ has no neighbor on
w
−→
Qt`−1, and that w′ has no neighbor on vt2

−→
Qt`−1.

Consider t`. Recall that v is not adjacent to a vertex with role in X1. This is because
r(v) ∈ Xt−1 is already adjacent to a role in Xt, namely r(u′), and then q = 2, whereas we
assumed that q ≥ 3. Hence t` with role z` ∈ X1 is not adjacent to v. Since Q is a shortest path
in R, we find that Q′ is an induced path in G. We already showed that ` ≥ 3, i.e., Q′ contains
at least three vertices. Hence we find that t` is not adjacent to w = t1. Consider u′. Because
lP (u′) = h and each vertex in w

−→
Qt`−1 appears for the first time in bag Kh′+1 or later, we find

that u′ has no neighbor on w
−→
Qt`−1. Consider w′. We already deduced that w′ and v are not

adjacent, and that w′ has no neighbor on t2
−→
Qt`−1.

The above indeed implies that the vertices t`, u′, w′ form an AT, contradicting the assumption
that G is proper interval. We conclude that r(Kh) ⊆ Xt for q + 1 ≤ h ≤ i− 1.

Because r(Kh) ⊆ Xt for q + 1 ≤ h ≤ i− 1, every vertex v with q + 1 ≤ fP (v) ≤ i− 1 has a
role in Xt and still needs a neighbor with role in X≤t−1. Hence K≥q+1 \Kq ⊆ K≥i.

11

We claim that Ki contains a vertex with role in Xt. If i ≥ q+2, then any vertex in Ki−1∩Ki

has role in Xt. Hence, for i ≥ q + 2, this claim is true. Suppose i = q + 1. Let s∗ ∈ Kq ∩Kq+1.
If s∗ /∈ T , then every vertex of T is in Kq+1, as otherwise s∗ will transcend such a vertex (we
can prove this using the same arguments as in the proof of Claim 1). So, also for i = q + 1, the
claim is true.

Because r(Ki) ∩ Xt 6= ∅ and |Ki| ≥ |Lq|, we find that r(Ki) = Lq, and hence |Ki| = |Lq|.
Since all vertices in Ki with role in X≤t−1 are not in K≤i−1, we find that the restriction of r to
K≥i is an R-role assignment. This proves (i).

Proof of (ii). Suppose all vertices in T are in Kq+1. Because t > 1, we find that L1 ∩ T = ∅.
Let i ≥ q + 1 be such that Ki contains a vertex u ∈ T , whereas Ki+1 does not contain u, so
lP (u) = i. Since L1∩T = ∅ and either r(Kp−q+1) = L1 or r(Kp) = L1 due to Theorem 3.1, such
an index i exists. We choose i ≥ q + 1 to be the smallest index with this property, i.e., T ⊆ Kh

for q + 1 ≤ h ≤ i. We observe that r(Ki) ⊆ Lq, because T ⊆ Ki.
Let C be the set of vertices in Kq ∩ Ki with role in X≤t−1. We claim that C is empty.

In order to prove this, suppose there exists a vertex u∗ ∈ C. Using the same arguments as in
Claim 1 of the proof of (i), we obtain lP (u∗) = lP (u) = i and without loss of generality that
r(u∗) ∈ Xt−1.

Let Lq = Xb∪· · ·∪Xt for some b ≤ t−1. Let v∗ ∈ Ki\Ki−1, so fP (v∗) = i. Because T ⊂ Ki,
we find that r(v∗) ∈ X≥b ∩X≤t−1. Then v∗ ∈ Ki+1 is adjacent to a vertex s with r(s) ∈ Xb−1.
Since fP (v) = i and a vertex with role in Xb−1 is not adjacent to a vertex in T (which has a
role in Xt), we find that lP (v) ≥ i + 1 and lP (s) ≥ i + 1. Since r(u∗) ∈ X≤t−1, roles r(u∗) and
r(s) are adjacent. Hence, s is adjacent to a vertex s′ with r(s′) = r(u∗). Because lP (u∗) = i
and fP (s) ≥ i + 1, we find that u∗ and s′ are two different and non-adjacent vertices. Let s′′

be a neighbor of s′ with r(s′′) ∈ Xt. Then fP (s′′) ≥ i + 1, and we find that s′′ and u∗ are also
non-adjacent.

Let z` ∈ X1 and let Q′ = z1 · · · z` with z1 = x be a shortest path from x to z` in R. By
Lemma 2.5 we find that G contains a path Q = t1 · · · t` with t1 = s such that r(ti) = zi for
i = 1, . . . , `.

We claim that ` ≥ 2. Suppose ` = 1. Then vertex s′ with r(s′) = r(u∗) ∈ Xt−1 is adjacent
to a vertex with role in X1, namely s. This means that q = 2, whereas we assumed that q ≥ 3.
Hence, ` ≥ 2 indeed.

We claim that s′ and v∗ are adjacent. Suppose not. Recall that r(s) ∈ Xb−1, and that s′

and v∗ both have a role in X≥b. Then, because Q′ is a shortest path, we find that t2 is neither
adjacent to s′ nor to v∗. This means that G contains an induced claw with center s and leaves
s′, t2, v

∗, contradicting the assumption that G is proper interval. We conclude that indeed s′v∗

is an edge.
We claim that s′′ and v∗ are not adjacent. Suppose they are. Recall that r(v∗) ∈ X≤t−1,

and that u∗ and s′′ both have a role in Xt. This means that v∗ is adjacent to a vertex v′

with role in X≤b−1, whereas u∗, s′′ are both not adjacent to such a vertex v′. Since u∗ and s′′

are not adjacent, we find that G contains an induced claw with center v∗ and leaves s′′, u∗, v′,
contradicting the assumption that G is proper interval. Hence s′′ and v∗ are not adjacent.

We claim that s and s′′ are not adjacent. Suppose they are. Then G contains an induced
claw with center s and leaves s′′, t2, v∗. This is not possible, as we saw before. Hence, indeed s
and s′′ are not adjacent.

We now consider the three paths u∗v∗s′s′′, u∗v∗st2, and t2ss
′s′′ and deduce from the above

12

claims that t2, u∗, s′′ form an AT, contradicting the assumption that G is proper interval. We
conclude that C = ∅.

Because C = ∅, we have Kq ∩Ki = T . This means that every v ∈ Ki \ T has fP (v) ≥ q + 1.
Because T ⊂ Kh for q + 1 ≤ h ≤ i, every v with q + 1 ≤ fP (v) ≤ i − 1 belongs to Ki and
still needs all its neighbors with roles in X≤b−1. Hence the restriction of r to K≤i is an R-role
assignment. Because T ⊂ Ki, we deduce that r(Ki) = Lq and r(Ki+1) = Lq−1 after applying
Theorem 3.1. Hence T ∩Ki+1 = ∅. This completes the proof of (ii).

Let G and R be two connected proper interval graphs with clique paths P = K1 · · ·Kp and
P ′ = L1 · · ·Lq, respectively. A mapping r : K≤i → VR for some 1 ≤ i ≤ p is a starting R-role
assignment of G[K≤i] if for all u ∈ K≤i \Ki+1 we have that r(NG(u)) = NR(r(u)), and for all
u ∈ Ki ∩Ki+1 we have that r(NG(u)) ⊆ NR(r(u)). Note that a starting R-role assignment of
G[K≤i] is an R-role assignment of G if and only if i = p. The idea of our algorithm will be to
extend a given starting role assignment of G[K≤i] to a starting role assignment of G[K≤i+1] at
each step i.

Let 1 ≤ i ≤ p, and let r be a starting R-role assignment of G[K≤i]. We say that a vertex
u ∈ Ki∩Ki+1 misses role x ∈ VR if x is a neighbor of r(u) in R, and x is not a role of a neighbor
of u in K≤i. Equivalently, x is a missing role of u. Let X1, . . . , Xt be the ordered twin sets of R.
We denote the set of missing roles of u that are in Xk by Mk(u). We call such a set a missing
role set of u. Note that missing role sets are only defined for vertices in Ki ∩ Ki+1, since by
the definition of a starting role assignment, every vertex in K≤i \Ki+1 has the required roles in
its neighborhood. We say that r can be finished by r∗ if r∗ is an R-role assignment of G with
r∗(u) = r(u) for all u ∈ K≤i.

The following lemma is important for the correctness and the running time analysis of our
algorithm.

Lemma 3.4. Let G and R be two connected proper interval graphs, let P = K1 · · ·Kp be the
clique path of G, and let X1, . . . , Xt be the ordered twin sets of R. Let r : K≤i → VR be a starting
R-role assignment of G[K≤i] for some 1 ≤ i ≤ p. If r can be finished by an R-role assignment
of G, then the following three statements hold.

(i) Mk(u) ⊆Mk(v) for every two vertices u, v ∈ Ki∩Ki+1 with fP (u) ≤ fP (v), for 1 ≤ k ≤ t.

(ii) When a vertex u ∈ Ki+1 \ Ki gets a role, then its missing role sets can be computed in
O(degG(u)) time in total.

(iii) When a vertex v ∈ Ki+1 \Ki gets a role, then all the missing role sets of the vertices in
Ki+1 that have a role already can be updated in O(degG(v)) time in total.

Proof. We prove the three statements separately.

Proof of (i). Let k ∈ {1, . . . , t}. Let u and v be two vertices in K≤i ∩Ki+1 = Ki ∩Ki+1 with
fP (u) ≤ fP (v) and let x be a role in Mk(u). We will show that x ∈Mk(v). Since u misses role
x ∈ Xk, and r can be finished by an R-role assignment, we know that u has a neighbor w in
K≥i+1 that must get role x. Since fP (u) ≤ fP (v) and G is a proper interval graph, we know that
lP (u) ≤ lP (v). Hence NG(u) ∩K≥i+1 ⊆ NG(v) ∩K≥i+1. Consequently v is also adjacent to w.
This means that v also misses role x, unless v already has a neighbor w′ in K≤i with r(w′) = x.
Assume that v has such a neighbor w′. Since u misses role x, we find that u is not adjacent

13

to w′. Because u ∈ Ki ∩ Ki+1 and w ∈ K≤i, this means that lP (w′) < fP (u). Because v is
adjacent to w′, we find that fP (v) ≤ lP (w′). Then we obtain fP (v) ≤ lP (w) < fP (u). However,
this is not possible because fP (u) ≤ fP (v) by our assumption. We conclude that v cannot have
a neighbor w′ ∈ K≤i with role x. So, indeed v misses role x as well. This proves (i).

Proof of (ii). Observe first that when the twin sets of R are initially computed, we can store for
each role which twin set it belongs to. Recall that these twin sets form a partition of VR. Let
u ∈ Ki+1 \Ki get a role. We run through the neighbors of u in G and mark the roles that any of
these have received. This takes O(degG(u)) time. Then we run through the neighbors of r(u) in
R to find the twin sets that these neighbors belong to. This takes O(degR(r(u)) = O(degG(u))
time, because degR(r(u)) ≤ degG(u) by the definition of a role assignment. Let these indices be
k1, . . . , kj . Now we run through the roles of each twin set Xk1 , . . . , Xkj

and put the unmarked
roles into sets Mk1(u), . . . ,Mkj

(u), respectively. This takes O(Σj
i=1|Xki

|) time. Observe that
r(u) is adjacent to every role in Xk1∪· · ·∪Xkj

because of the definition of a twin set and because
u misses at least one vertex from each of these twin sets. Consequently, and since all twin sets
are mutually disjoint, we find that Σj

i=1|Xki
| ≤ degR(r(u)). Because degR(r(u)) ≤ degG(u), this

means that the last step also takes O(degG(u)) time. Note that we did not consider any empty
missing role set of u. We conclude that M1(u), . . . ,Mt(u) can be computed in O(degG(u)) time
in total. This proves (ii).

Proof of (iii). For each role x of R we store the vertices of Ki+1 that have a role already and that
miss role x in a doubly linked list L(x). This list can be created and updated without adding
to the running time described in the proof of (ii); every time a vertex u receives its role and its
missing role sets are computed, we can add u to the list L(x) of every role x that u misses. Note
that any missing role x of u appears in exactly one missing role set Mk(u). Using this fact, we
keep pointers in both directions between the corresponding entries of these lists, i.e., u in L(x)
points to x in Mk(u) and vice versa.

Suppose we decide to assign role y to a vertex v ∈ Ki+1 \Ki. Because v is in Ki+1, we find
that v is adjacent to every vertex in Ki ∩Ki+1. Recall that the vertices in K≤i \Ki+1 do not
have any missing roles by definition of a starting role assignment. Hence L(y) contains at most
degG(v) vertices. Now we simply run through the vertices in the list L(y). For each vertex u
in this list, we follow the pointer that will lead us exactly to role y in a missing role set Mk(u)
of u. We delete y from Mk(u), and we delete u from L(y). This takes constant time for each
vertex in L(y). Because there are at most degG(v) vertices in L(y), the claimed running time
follows. This proves (iii), and the proof of Lemma 3.4 has now been completed.

We are now ready to present our main result, namely a linear time algorithm that solves the
Role Assignment problem on input pairs (G,R), where G is a proper interval graph, and R is
an arbitrary connected graph. We emphasize that connectivity is the only restriction imposed
on R. As a consequence, the running time of our algorithm only depends on G.

Theorem 3.5. Role Assignment can be solved in O(n+m) time on input pairs (G,R) where
G is a proper interval graph with n vertices and m edges, and R is a connected graph.

Proof. We present an algorithm with running time O(n + m) that takes as input a connected
proper interval graph G with n vertices and m edges and a connected graph R, and decides
whether G has an R-role assignment. If G is disconnected, then we run the described algorithm
on each connected component of G separately, still giving a total running time of O(n+m).

14

We first check in constant time whether |VR| ≤ n and |ER| ≤ m. If not, then the answer is
NO as a result of Observation 2.4.

Suppose |VR| ≤ n and |ER| ≤ m. We check whether R is a proper interval graph. This can
be done in O(|VR|+ |ER|) = O(n+m) time; see e.g. [3, 14]. If R is not a proper interval graph,
then the answer is NO due to Theorem 2.6.

Suppose R is a proper interval graph. Recall that G is connected, and let P = K1 · · ·Kp

be the clique path of G. Our algorithm starts by constructing P and ordering the vertices of
G as w1, . . . , wn such that fP (w1) ≤ . . . ≤ fP (wn), and lP (wj) ≤ lP (wj+1) whenever fP (wj) =
fP (wj+1), for j = 1, . . . , n − 1. Note that, as a consequence, lP (w1) ≤ . . . ≤ lP (wn), due to
Theorem 2.2. Recall that P can be computed in O(n +m) time; during this computation, the
ordering w1, . . . , wn can easily be generated within the same running time. Then we compute
the clique path of R. Let R have clique path P ′ = L1 · · ·Lq and ordered twin sets X1, . . . , Xt.
Because |VR| ≤ n and |ER| ≤ m, we can compute P ′ and the ordered twin sets inO(|VR|+|ER|) =
O(n + m) time. Since Lemma 3.3 applies only when q ≥ 3, we distinguish between the cases
where q = 1, q = 2, and q ≥ 3. These cases result, in principle, in three different algorithms,
depending on the number of bags of R.

Case 1: q = 1.
In this case R is a complete graph. We check whether |K1| = |VR|. If not, then we output NO
due to Theorem 3.1. Otherwise, we give each vertex in K1 a different role. This yields a starting
R-role assignment r of G[K1].

Suppose i ≥ 1 and that we have extended r to a starting R-role assignment of G[K≤i]. Let
u1, . . . , ub be the ordering of the vertices of Ki ∩Ki+1 obtained from our initial ordering of the
vertices of VG. Hence, fP (ua) ≤ fP (ua+1) and lP (ua) ≤ lP (ua+1) for a = 1, . . . , b− 1. We assign
different roles to the vertices of Ki+1 \Ki, where we first use the roles of M1(ua) in an arbitrary
order before using any roles of M1(ua+1) for a = 1, . . . , b− 1. This is because lP (ua) ≤ lP (ua+1)
for a = 1, . . . , b − 1. Consequently, we must first ensure that ua gets its required roles in the
neighborhood before considering ua+1. We may apply this greedy way of assigning roles, because
Lemma 3.4 (i) implies that M1(ua) ⊆ M1(ua+1) for a = 1, . . . , b − 1 if r can be finished by an
R-role assignment of G.

If we have used all the roles and there are still vertices in Ki+1 with no role yet, then we
output NO. Suppose all vertices in Ki+1 received a role. Then we verify if the resulting mapping
is a starting R-role assignment of G[K≤i+1]. If not, then we output NO, because the restriction
of any R-role assignment of G to K≤i+1 is a starting role assignment of G[K≤i+1]. Suppose we
obtained a starting R-role assignment of G[K≤i+1]. We stop if i + 1 = p, because a starting
R-role assignment of G[K≤p] = G is an R-role assignment of G. If i+ 1 < p, then we repeat the
above procedure with i = i+ 1.

We are left to show that the total running time of Case 1 is O(n + m). We first recall
that we never have to recompute an ordering of the vertices in a bag; we always use the initial
ordering. This means that the computations necessary to assign roles to the vertices in G are
of the following form:

(a) computing and updating missing role sets;

(b) checking if an obtained mapping is a starting role assignment.

By Lemma 3.4 (ii), we can compute the missing role set of a vertex u in O(deg(u)) time after we
assign a role to u. Suppose this happens when considering bag Ki+1. By Lemma 3.4 (iii), we can

15

update the missing role sets of the vertices in Ki+1 that have a role already in O(deg(u)) time
as well. Because we only assign a role to a vertex u once, the total time to compute and update
the missing role sets of all the vertices of G is

∑
u∈VG

O(deg(u)) +
∑

u∈VG
O(deg(u)) = O(m).

Simultaneously we keep track of vertices whose missing role sets all get empty. We do this,
because checking if an obtained mapping is a starting role assignment of K≤i+1 means checking
if every vertex in Ki+1 \ Ki+2 has an empty missing role set. Recall that every vertex is in
Ki+1 \Ki+2 for exactly one value of i. This means that checking whether the obtained mappings
are starting role assignments takes O(n) time in total. The total O(n+m) running time follows.

Case 2: q = 2.
In this case R has exactly two maximal cliques. We check in linear time whether G[K≤2] ' R.
If not, then we output NO due to Theorem 3.1. Otherwise, we assume without loss of generality
that G[K≤2] has an R-role assignment r with r(K1) = L1 and r(K2) = L2. We note that r is a
starting R-role assignment of G[K≤2].

From the above, we may assume that i ≥ 2 and that we have extended r to a starting R-role
assignment of G[K≤i]. We must extend r to K≤i+1 by assigning roles to Ki+1 \Ki. We say that
a choice of r on Ki+1 \Ki is right if our extension of r to K≤i+1 eventually leads to an R-role
assignment of G.

Because R has exactly two maximal cliques L1 and L2, it has exactly three twin sets, namely
X1 = L1 \L2, X2 = L1 ∩L2, and X3 = L2 \L1. For j = 1, 2, 3, let X ′j = r(Ki ∩Ki+1)∩Xj . Let
Y = r(Ki+1 \Ki) be the set of roles assigned to the vertices of Ki+1 \Ki after we have extended
r to K≤i+1. Before we explain how to do this, we first prove the following two claims.

Claim 1. If X ′1 ∪X ′3 = ∅, then all vertices in Ki ∩Ki+1 either all miss all roles in X1 and no
role in X3, or else they all miss all roles in X3 and no role in X1.

We prove Claim 1 as follows. Assume that r is a right choice and that X ′1 ∪X ′3 = ∅. Then all
vertices in Ki ∩Ki+1 have role in X ′2. First suppose Ki ∩Ki+1 contains a vertex u, such that
u has a neighbor v ∈ K≤i with r(v) ∈ X1 and a neighbor w ∈ K≤i with r(w) ∈ X3. Because
a vertex with role in X1 is not adjacent to a vertex with role in X3, there is no bag containing
both v and w. Then we may without loss of generality assume that lP (v) < fP (w). Because
X ′3 = ∅, we find that lP (u) ≥ i + 1 > lP (w). Because uv is an edge, there is a bag containing
u and v. Hence fP (u) ≤ lP (v). This means that fP (u) ≤ lP (v) < fP (w) ≤ lP (w) < lP (u).
Consequently, u transcends w. This is not possible due to Theorem 2.2. We conclude that every
vertex in Ki ∩Ki+1 either misses all roles in X1 and no role in X3, or else misses all roles in X3

and no role in X1.
Now suppose Ki ∩Ki+1 contains two vertices u, u′ such that u misses all roles in X1 and no

role in X3, whereas u′ misses all roles in X3 and no role in X1. Then there exists a neighbor v of
u with lP (v) ≤ i− 1 and role in X3, and there exists a neighbor v′ of u′ with lP (v′) ≤ i− 1 and
role in X1. Note that vu′ is not an edge in G, because u′ misses all roles in X3 and r(v) ∈ X3;
similarly, v′u is not an edge. Because roles in X1 are not adjacent to roles in X3, we may without
loss of generality assume that lP (v) < fP (v′). Because u and v are neighbors, there is a bag of P
that contains both of them. This means that fP (u) ≤ lP (v), and consequently, fP (u) < fP (v′).
This, together with lP (v′) < i < lP (u), implies that u and v′ are adjacent. This is not possible,
since we concluded earlier that v′u is not an edge. Consequently, we have proven Claim 1.

Claim 2. Let u ∈ Ki ∩Ki+1. If u misses a role in X1, then Y contains no role in X3, and if u
misses a role in X3, then Y contains no role in X1; otherwise r is not a right choice.

16

We prove Claim 2 as follows. Suppose u ∈ Ki ∩Ki+1 misses role x ∈ X3, and Y contains a role
in X1. Then, by definition of Y , there is a vertex u′ ∈ Ki+1 \Ki with r(u′) ∈ X1. Note that
fP (u′) = i + 1. Because u misses role x, it needs a neighbor v with fP (v) ≥ i + 1 and role x.
Because a vertex with role in X1 is not adjacent to a vertex with role in X3 and fP (u′) = i+ 1,
we find that lP (u′) < fP (v). Because u and v are neighbors, we get fP (v) ≤ lP (u). Then
fP (u) < i+ 1 = fP (u′) and lP (u′) < fP (v) ≤ lP (u). Hence u transcends u′. This is not possible
due to Theorem 2.2, and we have proven Claim 2.

We will now do as follows. Because a role in X1 is not adjacent to a role in X3, we know that
Y will either contain no role from X1 or no role from X3. If X ′1 6= ∅ then it is immediately clear
that Y contains no role in X3. If X ′3 6= ∅ then it is immediately clear that Y contains no role in
X1. Below we show how to decide whether Y contains no role from X1 or no role from X3 in
the case when X ′1 = X ′3 = ∅.

If X ′3 = ∅, then we pick a vertex u ∈ Ki ∩Ki+1 and check if u misses a role in X1. We apply
Claim 1 and either find that all vertices in Ki ∩Ki+1 miss all roles in X1 and no roles in X3, or
they all miss all roles in X3 and no role in X1. We apply Claim 2 in order to find that, in the
first case, Y contains no role in X3, and in the second case, Y contains no role in X1. From the
above we deduce that there are three cases:

(i) X ′1 6= ∅, and consequently, X ′3 = ∅ and Y contains no role from X3;

(ii) X ′3 6= ∅, and consequently, X ′1 = ∅ and Y contains no role from X1;

(iii) X ′1 = X ′3 = ∅ and we found that Y contains no role from X3;

(iv) X ′1 = X ′3 = ∅ and we found that Y contains no role from X1;

We assume without loss of generality that we are in case (ii) or (iv). This means that Y only
contains roles from (X2 \X ′2) ∪ (X3 \X ′3). Before we continue we need two new claims.

Claim 3. If Y contains a role from X2, then Y contains all roles from X3 \X ′3; otherwise r is
not a right choice.

We prove Claim 3 as follows. Let v ∈ Ki+1 \ Ki have role r(v) ∈ X2, and assume, for con-
tradiction, that role x ∈ X3 \ X ′3 does not belong to Y . Note that fP (v) = i + 1. Because Y
contains no role from X1, and X ′1 = ∅, we find that v has no neighbor in Ki+1 that has its role
in X1. Then, as fP (v) = i + 1 and r(v) ∈ X2, we find that v will need a neighbor w with role
r(w) ∈ X1 in a later bag, so fP (w) ≥ i+2. Because fP (v) = i+1 and x /∈ Y , we find that v also
needs a neighbor w′ with role r(w′) = x in a later bag, so fP (w′) ≥ i + 2. Because r(w) ∈ X1

and r(w′) ∈ X3, we find that w and w′ are not adjacent in G. Let u be a vertex in Ki+1 with
lP (u) = i+ 1. Because lP (u) = i+ 1 and fP (w) ≥ i+ 2, we find that u and w are not adjacent.
For the same reason, u and w′ are not adjacent. Then we find that G contains an induced claw
with center v and leaves u,w,w′, which contradicts the assumption that G is proper interval.
Hence we have proven Claim 3.

Claim 4. If Ki+1 \Ki contains two vertices v and v′ such that r(v) ∈ X2 and r(v′) ∈ X3, then
lP (v) > lP (v′); otherwise r is not a right choice.

We prove Claim 4 as follows. Suppose v and v′ are two vertices in Ki+1 \Ki such that r(v) ∈ X2

and r(v′) ∈ X3, and assume, for contradiction, that lP (v) ≤ lP (v′). Because fP (v) = fP (v′) and

17

lP (v) ≤ lP (v′), all neighbors of v are neighbors of v′. This means that also a neighbor of v with
role in X1 is a neighbor of v′. Because v′ has a role in X3, this is not possible. Hence, we have
proven Claim 4.

As we will explain, Claim 3 and Claim 4 enable us to assign roles to the vertices in Ki+1 \Ki.
Recall that we already have an ordering of the vertices in Ki ∩ Ki+1 as u1, . . . , ub such that
M2(ua) ⊆M2(ua+1) and M3(ua) ⊆M3(ua+1), for a = 1, . . . , b− 1. Note that M2(ub) ⊆ X2 \X ′2
and M3(ub) ⊆ X3 \X ′3.

From our initial ordering of the vertices of G, we immediately obtain an ordering v1, . . . , vd

of the vertices in Ki+1 \ Ki such that lP (vi) ≤ lP (vi+1) for i = 1, . . . , d − 1. We consider the
vertices of Ki+1\Ki in order v1, . . . , vd and try to assign different roles to them by first using the
roles in M3(u1) (in arbitrary order), then the roles in M3(u2) \M3(u1) (in arbitrary order), and
so on, and finally the remaining roles in (X3 \X ′3) \M3(ub) (in arbitrary order). The algorithm
must do so, because of the following two reasons. First, we must use the roles in X3 \X ′3 before
using any roles from X2 \ X ′2 by Claim 3. Second, the above implies together with Claim 4
that we must consider the vertices of Ki+1 \ Ki in order v1, . . . , vd. If necessary, i.e., if there
are still vertices in Ki+1 \Ki that have not received roles, we then continue to assign roles from
X2 \X ′2 in the same way, i.e, starting with the roles from M2(u1) and finishing with the roles
from (X2 \X ′2) \M2(ub). If this is not possible (i.e., there are too many vertices in Ki+1 \Ki)
then we output NO. Otherwise we check if r is a starting R-role assignment of G[K≤i+1]. If this
is not the case, then we output NO, because the restriction of any R-role assignment of G to
K≤i+1 is a starting role assignment of G[K≤i+1]. If this is the case, we stop if i+ 1 = p, because
a starting R-role assignment of G[K≤p] is an R-role assignment of G. If i+ 1 < p, we repeat the
above procedure with i = i+ 1. This completes the description and the correctness proof of the
algorithm for the case when R has two maximal cliques.

For the running time analysis we can use exactly the same arguments as for Case 1. The
only difference is that in Case 2 we may have to check if an arbitrary vertex u ∈ Ki ∩Ki+1 for
some 1 ≤ i ≤ p − 1 misses a role in X1 or a role in X3 in case X ′3 = ∅ or X ′1 = ∅, respectively.
This is equivalent to checking whether M1(u) = ∅ or M3(u) = ∅, respectively. As such it takes
constant time, as we maintain these sets as explained in the proof of Lemma 3.4. Because there
are at most n bags, this check is performed at most n times. Consequently, the extra running
time is O(n), and we conclude with a total running time of O(n+m) for Case 2 as well.

Case 3: q ≥ 3.
In this case R has at least three maximal cliques. First suppose p ≤ 2q. By Theorem 3.1, both
G[K≤q] and G[K≥p−q+1] must be isomorphic to R and have an R-role assignment, in case G
has an R-role assignment. Because p ≤ 2q, every vertex of G is in K≤q ∪ K≥p−q+1. Hence,
there are just four possibilities of assigning roles to vertices of G, namely two possibilities for
K≤q combined with two possibilities for K≥p−q+1. We check if one of them leads to an R-role
assignment of G. Verifying whether a mapping VG → VR is an R-role assignment of G can be
done in O(n+m) time by following the procedure of computing and updating missing role sets
as in Cases 1 and 2.

Now, suppose p ≥ 2q + 1. The main idea of the algorithm is to map the first q bags of G
to the bags of R, use Lemma 3.3 to identify any bags q + 1, ..., q + h of G to be “skipped”, and
then continue to find an isomorphism between R and the subgraph of G induced by the next q
bags of G. In the latter isomorphism, the bags of G will be mapped to the bags of the reversed
clique path of R.

18

We first check if G[K≤q] is isomorphic to R. This can be done in linear time [19]. If G[K≤q]
is not isomorphic to R, then we output NO due to Theorem 3.1. Suppose G[K≤q] ' R and that
without loss of generality we have a starting R-role assignment r of G[K≤q] with r(Kj) = Lj for
j = 1, . . . , q. We now check whether we are in situation (i) or (ii) of Lemma 3.3. This means
we have to check which vertices of Kq have roles in Xt and which of these belong to Kq+1.
Note that we can look up the twin set of the role of each vertex of G in constant time, and
decide whether a vertex v belongs to a particular bag Kj in constant time by checking whether
fP (v) ≤ j ≤ lP (v). Hence checking which situation of Lemma 3.3 applies can be done in O(|Kq|)
time. Then in both situations we can determine the desired index i as follows.

As in Lemma 3.3, the set T denotes the subset of Kq that consists of all vertices with a
role in Xt. We check if T contains a vertex that is not in Kq+1, as explained above. Suppose
such a vertex exists. Then, according to Lemma 3.3, there exists an index i ≥ q + 1 such that
K≥q+1 \ Kq ⊆ K≥i and the restriction of r to K≥i is an R-role assignment of G[K≥i] with
r(Ki) = Lq. Furthermore, if i > q + 1 then r(Kh) ⊆ Xt for h = q + 1, . . . , i − 1. We can find
this index i (if it exists) by checking the size of the bags Kh for h ≥ q + 1. We must have a
sequence of bags Kq+1, . . . ,Kq+h∗ with |Kh| ≤ |Xt| for h = 1, . . . , q + h∗ and |Kq+h∗ | = |Lq|.
During the initial computation of the clique path of G and the twin sets of R, the size of each
set can be computed without increasing the running time, and stored for allowing constant time
look up. Hence the existence of a sequence as described above can be checked in time O(h∗).
Then the desired index is i = q + h∗ if K≥q+1 \Kq ⊆ K≥q+h∗ is true as well. This condition is
equivalent to

⋃h∗−1
j=1 Kq+j \Kq ⊆ Kq+h∗ , and hence can be checked in time O(Σh∗

j=1|Kq+j |) by
going through all the vertices in these bags and checking in constant time whether each of them
belongs to Kq+h∗ . We observe that i is uniquely determined because |Lq| > |Xt|. If i does not
exist, then we output NO.

Now suppose T does not contain a vertex that is not in Kq+1, i.e., all vertices in T are in
Kq+1. Then, according to Lemma 3.3, there exists an index i ≥ q + 1 such that T = Ki−1 ∩Ki

and T ∩ Ki+1 = ∅, and the restriction of r to K≥i is an R-role assignment of G[K≥i] with
r(Ki) = Lq. We scan through the bags Kq+1,Kq+2, . . ., and we stop as soon as we find a bag
Kq+h for some h ≥ 1 that does not contain some vertex of T . Then we check if T ∩Kq+h = ∅ and
if T = Kq+h−2∩Kq+h−1. If one of these conditions is not true, then we output NO. Otherwise we
choose i = q+h− 1. The described procedure can clearly be performed in time O(Σh

j=1|Kq+j |).
Now suppose that we have found the desired index i as described above. Then we consider

G[K≥i]. By Lemma 3.3, we just have to check if G[K≥i] has an R-role assignment r with
r(Ki) = Lq. We can do this by using our algorithm; the only difference is that now the roles of
the first bag are determined to go to Lq, whereas before we had two options (either L1 or Lq).
This completes the description and the correctness proof of the algorithm for the case when R
has at least three maximal cliques.

To complete the running time analysis, note that finding the next index i according to
Lemma 3.3 might have to be performed several times. However, each time this is done on a
different, non-overlapping part of the clique path of G. Using the running time arguments given
above, we then get O(n+ Σp

j=1|Kj |) total running time, which is O(n+m), because the sum of
the sizes of all maximal cliques is O(n+m) (see [20]).

Below we show how to use the algorithm described in Theorem 3.5 to deal with the case in
which G is a proper interval graph and R is an arbitrary graph that is not necessarily connected.
We observe that the running time now also depends on the number of connected components

19

of R.

Corollary 3.6. Role Assignment can be solved in O((n+m) · cR) time on input pairs (G,R)
where G is a proper interval graph with n vertices and m edges and R is an arbitrary graph with
cR connected components.

Proof. If cR > 1, then R is disconnected. In this case we cannot assume that |VR| ≤ |VG|. By
the definition of a role assignment, G has an R-role assignment if and only if each connected
component of G has an R′-role assignment for some connected component R′ of R. Hence we
can run our algorithm on G and every connected component of R. This gives a total running
time O((n+m) · cR).

The problem Proper Connected Coloring is to test whether a graph G allows a mapping
c : VG → {1, . . . , `} for some ` < |VG| such that c(NG(u)) = c(NG(v)) whenever c(u) = c(v).
This problem is equivalent to testing whether a graph has an R-role assignment for some smaller
graph R. It is co-NP-complete in general [5]. Theorem 3.5 together with Corollary 3.2 has the
following consequence.

Corollary 3.7. The Proper Connected Coloring problem can be solved in polynomial time
for proper interval graphs.

Proof. Let G be a proper interval graph with n vertices and m edges. First assume that G is
connected. If n = 1, then the answer is No. Suppose n ≥ 2. Let P = K1 · · ·Kp be the clique
path of G. Note that p ≤ n by the definition of a clique path. By Corollary 3.2 we find that
G only has an R-role assignment if R ' G[K≤i] for some 1 ≤ i ≤ p. This means that we need
to apply the O(n + m) time algorithm for connected proper interval graphs of Theorem 3.5 at
most p ≤ n times. Since G is connected, m ≥ n − 1 ≥ 1 and O(n + m) = O(m). Hence we
find that testing whether G has an R-role assignment for some graph R with |VR| < |VG| takes
O(nm) time.

Now assume that G is disconnected, and let G1, . . . , Ga be the connected components of
G, a ≥ 2. We define nj = |VGj | and mj = |EGj | for j = 1, . . . , a. For increasing values of j
from 1 to a, we consider Gj . If nj ≥ 2, we check if Gj has an Rj-role assignment for some
role graph Rj with |VRj | < nj . As soon as we find a value of j for which such a graph Rj

exists, we replace the connected component Gj by the graph Rj in G, i.e., we output R =
G1⊕ . . .⊕Gj−1⊕Rj⊕Gj+1⊕ . . .⊕Ga, where ⊕ denotes the disjoint union operation on graphs.
If for none of the values of j we find a suitable role graph Rj in this way, then we output NO.
Because we need O(njmj) time for each Gj , and since n = n1 + . . .+na and m = m1 + . . .+ma,
the total running time of this algorithm is O(nm).

As a consequence, we have in fact a stronger result: given a proper interval graph G, we
can list in polynomial time all graphs R (up to isomorphism) with |VR| < n such that G has an
R-role assignment.

4 Complementary Results and Open Questions

A homomorphism r from a graph G to a graph R is locally injective if |r(NG(u))| = |NG(u)| for
every u ∈ VG, and r is locally bijective if r(NG(u)) = NR(r(u)) and |r(NG(u))| = |NG(u)| for
every u ∈ VG. Locally injective homomorphisms, also called partial coverings, have applications

20

in frequency assignment [8] and telecommunication [9]. Locally bijective homomorphisms are
also called coverings and have applications in topological graph theory [22] and distributed
computing [1, 2]. The corresponding decision problems, called Partial Cover and Cover
respectively, are NP-complete for arbitrary G even when R is fixed to be the complete graph on
four vertices [9, 17].

In this section, to give a complete picture, we study the computational complexity of all
three locally constrained homomorphisms on chordal, interval, and proper interval graphs. Our
findings can be summarized in the table below, where the three problems have input (G,R) and
the left column indicates the graph class that G belongs to. In the table, R is assumed to be an
arbitrary graph.

Partial Cover Cover Role Assignment
Chordal NP-complete GI-complete GI-hard
Interval NP-complete Polynomial ?
Proper Interval NP-complete Polynomial Polynomial

We start with the following result, which allows us to conclude several of the entries in the
above table, and which can be viewed as interesting on its own.

Theorem 4.1. Let G be a chordal graph and let R be a connected graph. Then there exists a
locally bijective homomorphism from G to R if and only if every connected component of G is
isomorphic to R.

Proof. If G is disconnected then we consider each connected component of G separately. Assume
that G is connected. If G is isomorphic to R, then the identity mapping from G to R is our
desired locally bijective homomorphism.

For the reverse implication, suppose that there exists a locally bijective homomorphism r
from G to R. Because any locally bijective homomorphism is also locally surjective, we can apply
Theorem 2.6 in order to find that R is chordal. For the same reason we can apply Observation 2.4
in order to find that each vertex in R appears as a role of at least one vertex in G. We claim that
each vertex in R appears as a role of exactly one vertex in G. In order to derive a contradiction,
suppose there exists a vertex x ∈ VR such that r−1(x) has size at least two.

Let v and v′ be two different vertices of G belonging to r−1(x). Let P be a shortest path
from v to v′ in G. Because P is shortest, P is an induced path. From the definition of a locally
bijective homomorphism we deduce the following two statements. Firstly, because two vertices
with the same role cannot be adjacent, we find that |VP | 6= 2. Secondly, because a vertex has
no two neighbors with the same role, we find that |VP | 6= 3. Hence, P is an induced path with
|VP | ≥ 4. This, together with r(v) = r(v′) = x, means that r(P) forms an induced cycle D in
R with |VD| = |VP | − 1. Because R is chordal, D must consist of three vertices, say D = xyzx.
Consequently, |VP | = 4 holds.

Let C be the connected component of G[r−1({x, y, z})] that contains v and v′. By definition
of a locally bijective homomorphism, every vertex is of degree two in D. This means that D
is an induced cycle in G. Because every vertex of P belongs to D, and |VP | = 4, we find that
|VD| ≥ 4. This contradicts our assumption that G is chordal. We conclude that indeed each
vertex in R appears as a role of exactly one vertex in G. This means that r is an isomorphism
between G and R, and we find that G ' R, as desired.

21

It is known that Graph Isomorphism is Graph Isomorphism-complete even for pairs
(G,R) where G and R are chordal graphs [19]. From Theorem 4.1 we get an immediate polyno-
mial time reduction from Graph Isomorphism on chordal graphs to Cover on chordal graphs,
and vice versa. Hence Cover is Graph Isomorphism-complete for pairs (G,R) where G and
R are chordal graphs. On the other hand, Cover is polynomial time solvable on interval graphs,
and hence also on proper interval graphs, since isomorphism between two interval graphs can
be checked in polynomial time [19]. Because every locally bijective homomorphism is locally
surjective, we can use Theorem 2.6 to deduce that these three results stay valid for input pairs
(G,R) where only G is required to be chordal and R may be an arbitrary graph. This explains
the three corresponding entries in the table.

Unfortunately, as indicated in the table, the problem Partial Cover remains NP-complete
even on pairs (G,R) where G is a proper interval graph and R is an arbitrary graph. This is
because Partial Cover is already NP-complete on pairs (G,R) where G is a complete graph
and R is an arbitrary graph. In such cases, G allows a locally injective homomorphism to R if
and only if R contains G as a subgraph. Deciding if a graph contains a complete graph as a
subgraph is equivalent to the NP-compete problem Clique (see e.g. [13]).

We present one more complexity result on the Role Assignment problem. This result
explains a corresponding entry in the table after applying Theorem 2.6. It shows that, un-
less Graph Isomorphism is polynomial time solvable, we do not have hope of solving Role
Assignment in polynomial time on chordal graphs.

Theorem 4.2. Role Assignment is Graph Isomorphism-hard on input pairs (G,R) where
G and R are chordal graphs.

Proof. As we argued above, Cover is Graph Isomorphism-complete on input pairs (G,R)
where both G and R are chordal graphs. We start by showing that this is true even when G
and R are connected and have the same number of vertices. In order to see this, let G and R be
two chordal graphs that form an instance of Graph Isomorphism. If |VG| 6= |VR|, or if one of
the graphs is connected and the other one is disconnected, then G and R cannot be isomorphic.
Both conditions can be checked in polynomial time. Hence, we assume that |VG| = |VR| = d
and that both G and R are disconnected. Add a vertex u to G that is adjacent to every vertex
of VG to obtain a connected chordal graph G′ on d + 1 vertices. Add a vertex x to R that is
adjacent to every vertex of VR to obtain a connected chordal graph R′ on d+1 vertices. Because
G and R are disconnected, u is the only vertex of G′ with degree d, and x is the only vertex of
R′ with degree d. Consequently, any isomorphism from G′ to R′ must map u to x, and hence
G is isomorphic to R if and only if G′ is isomorphic to R′. By Theorem 4.1, G′ is isomorphic
to R′ if and only if there is a locally bijective homomorphism from G′ to R′. Combining the
last two statements yields that G is isomorphic to R if and only if there is a locally bijective
homomorphism from G′ to R′, as desired.

Now we give a polynomial time reduction from Cover on connected chordal graphs with the
same number of vertices to Role Assignment on chordal graphs. In fact we show that Cover
and Role Assignment are equivalent on connected chordal graphs with the same number of
vertices. Let G and R be two connected chordal graphs with |VG| = |VR|. We claim that G allows
a locally bijective homomorphism to R if and only if G allows a locally surjective homomorphism
to R.

Suppose G allows a locally bijective homomorphism r to R. Because any locally bijective
homomorphism is locally surjective by definition, r is a locally surjective homomorphism from

22

G to R. To prove the reverse implication, suppose G allows a locally surjective homomorphism
to R. Recall that |VG| = |VR|. Then we use Observation 2.4 to deduce that G ' R. Hence, G
allows a locally bijective homomorphism to R, namely the identity mapping. This completes
the reduction and the proof.

Just as for Role Assignment, we denote the problems Cover and Partial Cover as
R-Cover and R-Partial Cover, respectively, if R is fixed, i.e., not a part of the input. In
that case we obtain the following result.

Proposition 4.3. For any fixed R, the problems R-Role Assignment, R-Cover, and R-
Partial Cover can be solved in linear time on chordal graphs.

Proof. We first observe that a homomorphism from G to R maps the vertices in a clique of G
to different vertices of R. Hence, in order to get a YES answer, a largest clique in G can have
at most |VR| vertices. We compute the number of vertices in a largest clique of G in linear
time. If this number is greater than |VR|, we output NO. Otherwise, because the treewidth of
a chordal graph is equal to the number of vertices in a largest clique minus 1, we find that G
has treewidth bounded by |VR|, which is a constant, as R is fixed. Since all three problems
are expressible in monadic second order logic, linear time solvability follows from a well-known
result of Courcelle [6].

We conclude with the following two open questions resulting from the table.

1. Is Role Assignment NP-complete on input pairs (G,R) when G is a chordal graph?

2. What is the computational complexity of Role Assignment on input pairs (G,R) when
G is an interval graph?

References

[1] D. Angluin, Local and global properties in networks of processors, Proceedings of STOC
1980, ACM (1980) 82–93.

[2] H. L. Bodlaender, The classification of coverings of processor networks, Journal of Parallel
and Distributed Computing 6 (1989) 166–182.

[3] A. Brandstädt, V.B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[4] J. Chalopin, Y. Métivier, and W. Zielonka, Local computations in graphs: the case of
cellular edge local computations, Fundamenta Informaticae 74 (2006) 85–114.

[5] J. Chalopin and D. Paulusma, Graph labelings derived from models in distributed comput-
ing, Proceedings of WG 2006, LNCS 4271 (2006) 301–312.

[6] B. Courcelle, The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs, Information and Computation 85 (1990) 12–75.

[7] M. G. Everett and S. Borgatti, Role colouring a graph, Mathematical Social Sciences 21
(1991) 183–188.

23

[8] J. Fiala J. Kratochv́ıl and T. Kloks, Fixed-parameter complexity of λ-labelings. Discrete
Applied Mathematics 113 (2001) 59–72.

[9] J. Fiala and J. Kratochv́ıl, Partial covers of graphs, Discussiones Mathematicae Graph
Theory 22 (2002) 89–99.

[10] J. Fiala, and D. Paulusma, A complete complexity classification of the role assignment
problem, Theoretical Computer Science 349 (2005) 67–81.

[11] J. Fiala and D. Paulusma, Comparing universal covers in polynomial time, Theory of Com-
puting Systems 46 (2010) 620–635.

[12] D. Fulkerson and O. Gross, Incidence matrices and interval graphs, Pacific Journal of
Mathematics 15 (1965) 835–855.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and Co.,
New York, 1979.

[14] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Math-
ematics Vol 57, Elsevier B.V., Amsterdam, 2004.

[15] P. Heggernes, P. van ’t Hof, and D. Paulusma, Computing role assignments of proper
interval graphs in polynomial time, Proceedings of IWOCA 2010, LNCS (2010) to appear.

[16] L. Ibarra, The clique-separator graph for chordal graphs, Discrete Applied Mathematics
157 (2009) 1737–1749.

[17] J. Kratochv́ıl, A. Proskurowski, and J. A. Telle, Covering regular graphs, Journal of Com-
binatorial Theory, Series B 71 (1997) 1–16.

[18] C. Lekkerkerker and D. Boland, Representation of finite graphs by a set of intervals on the
real line, Fundamenta Mathematicae 51 (1962) 45–64.

[19] G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph isomor-
phism, Journal of the ACM 26 (1979) 183–195.

[20] Y. Okamoto, U Takeaki, and R. Uehara. Counting the number of independent sets in chordal
graphs. Journal of Discrete Algorithms 6 (2008) 229–242.

[21] A. Pekeč and F. S. Roberts, The role assignment model nearly fits most social networks,
Mathematical Social Sciences 41 (2001) 275–293.

[22] K. Reidemeister, Einführung in die kombinatorische Topologie. Braunschweig: Friedr.
Vieweg. Sohn A.-G. XII, 209 S., 1932.

[23] Y. Rieck and Y. Yamashita, Finite planar emulators for K4,5−4K2 and K1,2,2,2 and Fellows’
conjecture, European Journal of Combinatorics 31 (2010) 903–907.

[24] F. S. Roberts, Indifference Graphs, In: Proof Techniques in Graph Theory, Academic Press,
New York (1969) 139–146.

[25] L. Sheng, 2-Role assignments on triangulated graphs, Theoretical Computer Science 304
(2003) 201–214.

24

