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Abstract

Given n clubs with two teams each, we show that, if n is even, it is possible to construct a schedule for a
single round robin tournament satisfying the following properties: the number of breaks is 2n — 2, teams of
the same club never play at home simultaneously, and they play against each other in the first round. We also
consider a fairness constraint related to different playing strengths of teams competing in the tournament.
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1. Introduction and Problem Specification

Sports scheduling is a well-established and im-
portant area of operations research with numerous
practical applications. Although schedules for cer-
tain simple tournaments can easily be generated us-
ing combinatorial methods, the problem of finding
a schedule becomes very hard when it has to satisfy
additional constraints. In practice, sports schedules
are required to satisfy more and more constraints
in order to meet the increasing demands of sports
clubs and associations, supporters’ organizations,
TV networks, and local communities. We refer to
the extensive survey by Rasmussen and Trick [5] for
an overview of many of these constraints.

We consider sports leagues having a set of 2n
teams. A single round robin tournament (SRRT)
is a tournament where each team plays a match
against every other team exactly once.  The
matches of an SRRT are divided into rounds in
such a way that each team plays at most one match
per round. Throughout this paper, we assume
that each team plays exactly one match per round,
which means that there are exactly 2n — 1 rounds;
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such an SRRT is called compact in [5]. A timetable
for an SRRT is a table whose rows correspond to the
teams and whose columns correspond to the rounds,
such that the entry in row ¢ and column j repre-
sents the opponent of team ¢ in round j. A well-
known method for generating a timetable for an
SRRT is the so-called Circle Method, dating back
to 1883 [4] (see also Section 2). Each match is car-
ried out at the venue of one of the two opponents.
A home-away pattern for a team is a sequence of
length 2n — 1 specifying for each round whether the
team plays at home or away. The home-away pat-
terns for all 2n teams together constitute a home-
away pattern set, determining the home team for
each match of the SRRT. A schedule for an SRRT
consists of a timetable and a corresponding home-
away pattern set. We say that a team has a break in
round k if the team plays either at home in rounds
k — 1 and k, or plays away in both these rounds.
It is well-known that each home-away pattern set
of a single round robin tournament with 2n teams
yields at least 2n — 2 breaks, and that a home-away
pattern set with exactly 2n —2 breaks exists for any
timetable constructed using the Circle Method; see
for example [3]. Two home-away patterns that are
different in each round are called complementary.
We say that two teams play complementary if their
home-away patterns are complementary.

Schedules for SRRTs with a minimum number
of breaks have been studied by many different re-
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searchers: Rasmussen and Trick [5] devote an entire
section of their survey to break minimization. Since
playing away in several consecutive rounds is seen
as a disadvantage, a schedule with as few breaks as
possible is considered fairer than a schedule where
more breaks occur. Moreover, such a schedule al-
lows supporters to see a home game every other
round, and this guarantees regular earnings from
home games for the owner of the venue. Comple-
mentary constraints often appear in practice when
designing schedules for sports leagues; again, we re-
fer to [5] for many references. For example, if two
football clubs both have a stadium in the same city,
then it is desirable that they do not play at home
simultaneously in order to avoid traffic problems
and conflicts between supporters. Sometimes, for
example when two football clubs share the same
stadium, it is not only desirable that they do not
both play at home in any round, but this forms a
hard requirement. A more extreme example, which
forms the original motivation for this paper, is a
local billiards league in the Netherlands. Due to
the large number of teams competing in the league,
the teams play each other exactly once per year in
a single round robin tournament. The teams are
associated to pubs. Although most pubs have more
than one team competing in the league, they typi-
cally have only one billiards table. Since teams of
the same pub share this single table, at most one
of them can play at home in each round. For fair-
ness reasons it is required that teams of the same
pub play against each other as early as possible in
the tournament, so that a team cannot deliberately
lose a game at the end of the tournament to give
another team of the same pub an unfair advantage.
Motivated by the billiards league described
above, we consider in Section 2 a set of n clubs,
having exactly two teams and one venue each. As
we mentioned before, any schedule for an SRRT
with 2n teams contains at least 2n — 2 breaks. The
question is whether a schedule with exactly 2n — 2
breaks exists if the schedule has to satisfy the fol-
lowing two conditions: teams of the same club do
not play at home in the same round, and they play
against each other in the first round. We prove
that for every even n such a schedule indeed exists
by presenting a method for constructing a schedule
for an SRRT satisfying the following properties:

Property I. The number of breaks equals 2n—
2.

Property II. The teams of the same club play

complementary.

Property III. The teams of the same club
meet in the first round.

Note that Property II implies that teams of the
same club do not play at home in the same round.
In fact, the reverse implication also holds. After
all, in every round, n teams play at home and n
teams play away. If both teams of a club play away
in round k, then the n teams that play at home in
round k must belong to the other n — 1 clubs. This
implies that there is at least one club both teams of
which play at home in round k. Hence demanding
teams of the same club not to play at home in the
same round is equivalent to demanding teams of the
same club to play complementary.

In Section 3 we consider another fairness con-
straint. It is considered unfair if one team
plays against strong teams in several consecu-
tive matches, whereas another team has a match
against a weak team following each match against
a strong team. In order to deal with fairness issues
arising from teams of different playing strengths,
Briskorn [2] introduced the concept of strength
groups. The basic idea is that teams with equal
or similar playing strengths are contained in the
same strength group. If there are s different
strength groups, each containing the same num-
ber of teams, then the goal is to find a schedule
where no team plays against two teams of the same
strength group within any s consecutive rounds.
An SRRT having such a schedule is called group-
balanced. Briskorn [2] studies the case where 2n/s
is an integer and each strength group contains ex-
actly 2n/s teams is considered. He proves that a
group-balanced schedule exists if and only if both
s and 2n/s are even. In Section 3 we consider the
case where 2n teams are divided into n strength
groups, each containing two teams. We present
a method for constructing a schedule for a group-
balanced SRRT with 2n — 2 breaks, for every even
n.

Section 4 contains the conclusions and mentions
some open problems.

2. Sports schedules with multiple teams per
club

One of the oldest and easiest ways of construct-
ing a timetable for an SRRT with 2n teams is the
so-called Circle Method, described by Lucas [4] in



1883. SRRT's constructed using the Circle Method
are also known as Lucas leagues; see for example [1].
The Circle Method can be presented in algebraic
form as follows.

Circle Method

(a) Fori,j < 2n and i # j, the teams ¢ and j play
inround k ifi+j— 1=k (mod 2n —1).

(b) For i < 2n, the teams i and 2n play in round
kif2i — 1=k (mod 2n —1).

For the remainder of this section we consider the
case of n clubs, where n is even. Each club has
exactly two teams, and the teams are numbered
from 1 to 2n in such a way that for i < n the teams
i and 7 + n — 1 belong to the same club, and the
same holds for the teams 2n — 1 and 2n.

The purpose of this section is to prove the exis-
tence of a schedule for an SRRT satisfying Prop-
erties I, II, and III, specified in Section 1, for ev-
ery even n. We do this by an explicit construction
of such a schedule. We first describe a method,
closely resembling the Circle Method, for generat-
ing a timetable for an SRRT with 2n teams; we
call this method the Adapted Circle Method. We
then show how to construct a home-away pattern
set that, together with the timetable constructed by
the Adapted Circle Method, constitutes a schedule
for an SRRT satisfying Properties I, II, and III.

Adapted Circle Method

(a) In round 1, each team plays against the other
team of the same club.

(b) Fori,j < 2n—2, the teams ¢ and j of different
clubs play in round k& > 2 if i + 7 = k (mod
2n — 2).

It remains to describe the matches involving the
teams 2n — 1 and 2n. It follows from rules (a) and
(b) that for team 4 these must be played in the
rounds k, where either k = 2¢ (mod 2n —2) or k =
2i+n—1 (mod 2n — 2).

(cl) For 1 < ¢ < %n, team 4 plays against
2n—1 inround 2i+n —1

2n in round 27 .

(c2) For %n +1 <i<n-—1, team ¢ plays against
2n—1 in round 2
2n in round 2 — (n — 1) .

(¢3) For n < i < 3n — 1, team i plays against

2n—1 inround 2i —2(n —1)
2n in round 2i — (n — 1) .
(c4) For %n < i < 2n — 2, team 7 plays against
2n—1 inround 2i —3(n —1)
2n in round 2 —2(n — 1) .

It is not difficult to verify that every team 7 plays
against each of the 2n—1 other teams for ¢ < 2n—2.
For the teams 2n — 1 and 2n the opponents follow
from rules (cl)—(c4). Team 2n — 1 plays against

team 2n in round 1, and plays against the teams
1,2,...,2n — 2 in rounds

n+1n+3,...,2n—3,2n — 1,
n+2,n+4,...,2n—4,2n — 2,
2,4,...,n—2,n,
3,9,...,n—3,n—1,

(1)

respectively. For team 2n the analysis is similar.
We conclude that the Adapted Circle Method in-
deed yields a timetable for an SRRT with 2n teams.
See Table 1 for an example of a timetable for 12
teams generated using the Adapted Circle Method.

Note that in rule (b) of the Adapted Circle
Method there is a shift of one round as compared to
rule (a) of the Circle Method, due to the special first
round. Also note that calculations are done modulo
2n — 2 in the Adapted Circle Method, as opposed
to modulo 2n —1 calculations in the Circle Method.
This is due to the fact that the Circle Method has
only one exceptional team, namely team 2n (some-
times called team oo in the literature), whereas the
Adapted Circle Method has two exceptional teams,
namely teams 2n—1 and 2n. We point out that the
Adapted Circle Method cannot be applied when n
is odd, since in that case the aforementioned rounds
in (1) are not all different.

To define a home-away pattern set satisfying
Properties I and IT we introduce the band.



Definition 1. Given a timetable constructed using
the Adapted Circle Method, the band B consist of
all pairs (i, k) of team i < 2n — 2 and round k, for
which

1 1
§(k5+5k)§i<§(k+5k)+n_17
where
5 = 1 ifk<n
0 ifk>n.

The grey entries of the schedule in Table 1
form the band of the corresponding timetable for
12 teams, constructed using the Adapted Circle
Method. Using the band, we construct a home-
away pattern set as follows.

Lemma 1. Given a timetable constructed using
the Adapted Circle Method, a home-away pattern
set is obtained as follows. For i < 2n — 2, team i
plays at home in round k if and only if one of the
following holds:

(i,k) € B
(i,k) ¢ B

In round 1 team 2n — 1 plays at home against team
2n. In every other round the teams 2n — 1 and 2n
play complementary to their opponents.

and k is odd

and k is even .

PROOF. It is clear that each team ¢ plays either at
home or away in each round. Hence, in order to
prove that the rules described in Lemma 1 define a
proper home-away pattern set, it suffices to prove
that if two teams meet in round k, then one plays
at home and the other plays away. For all matches
involving the teams 2n — 1 and 2n, this immedi-
ately follows from the formulation of the lemma.
So suppose now that the teams ¢ and j meet in
round k, and assume without loss of generality that
1 < j < 2n—2. We have to prove that exactly one of
the pairs (i, k) and (j, k) is in the band. For k =1
this is the case, since j = ¢ + n — 1, which implies
that (i,1) is in the band, and (4, 1) is outside. For
k > 1 it follows from rule (b) of the Adapted Circle
Method that either i +j=kori+j=k+2n—2.
We consider both cases below.

In the first case i < %k‘, so (i,k) ¢ B. On the
other hand j > 1k implies that 1(k + &) < j.
To prove that (j,k) € B, it remains to prove that

j < 3(k+6y) +n— 1. For this we note that j < k
and k < 2n — 1 imply

j<k—-1 =3k+3ik—-1<3k+3@2n—-1)—-1
=1k+n—3<I(k+6)+n—1

Hence we have that j < 1(k + 6;) +n — 1 and we
proved that (j,k) € B.

In the second case j > %k‘ + n — 1, which implies
that j > 2(k + dx) +n — 1, and hence (j, k) ¢ B.
At the same time we have that i < %k +n—1, so
surely i < %(k+0;)+n—1. To prove that (i, k) € B
it remains to prove that i > %(k + ;). To get a
contradiction we assume that ¢ < % (k + 6;). This
implies that i < %k Ifi = %k (implying that k is
even), team 7 plays against team 2n — 1 or 2n; cases
we already discarded. If i < %k then the opponent
is k—1, implying that j < k. This is in contradiction
with j > 3k +n — 1. Hence (i, k) € B. O

Table 1 contains a schedule for an SRRT with
12 teams; the timetable has been constructed
using the Adapted Circle Method, and the home-
away pattern set is generated as described in
Lemma 1. The entries belonging to the band
are colored grey, and a positive (respectively
negative) entry in row 4 and column k indicates
that team 4 plays at home (respectively away) in
round k. For other values of n a java script is
available: see http://wwwhome.math.utwente.nl/
~postgf/RoundRobinWithTwoTeamsPerClub.html.

It is easy to verify that the schedule in Table
1 satisfies Properties I, II and III. We now prove
that this is the case for every schedule constructed
using the Adapted Circle Method and the home-
away pattern set defined in Lemma 1.

Theorem 1. For every even n there exists a single
round robin tournament with 2n teams, satisfying
Properties I, II, and III specified in Section 1.

PROOF. We show that any timetable generated us-
ing the Adapted Circle Method, together with a
home-away pattern set defined in Lemma 1, consti-
tutes a schedule for an SRRT satisfying Properties
I, IT and III.

In order to prove Property I we note that team
i < 2n—2 does not have a break in round &, 2 < k <
2n, if and only if the pairs (¢,k — 1) and (i, k) are
both inside or both outside the band. Since for each
1 < 2n — 2 the transition from inside to outside the
band —or vice versa— happens exactly once, each of



Round: 1 2 3 4 5 6 7 8 9 10 11
Team 1 6 -12 -2 3 -4 5) -11 7 -8 9 -10
Team 2 7 -10 1 -12 -3 4 -5 6 -11 8 -9
Team 3 8 -9 10 -1 2 -12 4 5 -6 7 -11
Team 4 9 -8 12 -10 1 -2 3 11 -5 6 -7
Team 5 10 -7 8 -9 12 -1 2 -3 4 11 -6
Team 6 -1 11 7 -8 9 -10 12 -2 3 -4 5)
Team 7 -2 5 -6 11 8 -9 10 -1 12 -3 4
Team 8 -3 4 -5 6 -7 11 9 -10 1 -2 12
Team 9 -4 3 -11 5 -6 7 -8 -12 10 -1 2
Team 10 -5 2 -3 4 -11 6 -7 8 -9 -12 1
Team 11 12 -6 9 -7 10 -8 1 -4 2 -5 3
Team 12 -11 1 -4 2 -5 3 -6 9 -7 10 -8

Table 1. A schedule for an SRRT with 12 teams generated using the Adapted Circle Method. The grey entries form
the band.

those teams has exactly one break. For every round
k, if team 2n — 1 plays against team ¢, then the pair
(i,k) is outside B. Hence the home-away pattern
for team 2n — 1 is home-away—home— --- —away—
home, which means that team 2n — 1 does not have
a break. Similarly, the pair (i, k) corresponding to
the opponent i of team 2n in round k is always
inside B. Hence the home-away pattern of team
2n is complementary to that of team 2n — 1, which
means that team 2n does not have a break either.

In order to prove Property II we note that for
every fixed round exactly n—1 “consecutive” teams
belong to the band. Hence for i < n the teams ¢
and ¢ +n — 1 play complementary, since for each
round k either (i,k) or (¢ + n — 1,k) is inside the
band. As noted in the first part of the proof the
teams 2n — 1 and 2n play complementary as well.

Property III follows directly from the construc-
tion of the first round. (]

3. Group-balanced schedules

The schedule constructed using the Adapted Cir-
cle Method as described in Section 2 is much more
structured than required by Properties I, II, and
II1. In fact, a closer look at the schedule in Table 1
and rules (b) and (c1)—(c4) of the Adapted Circle

Method reveals that any such schedule also has the
following property:

Property IV. If a team of club A plays
against a team of club B, then the other teams
of the clubs A and B meet in the same round.

For the matches defined by rule (b) this can be seen
by considering ¢,j < n — 1, and realizing that by
adding n — 1 to ¢ and 5 we move to the teams of
the same club. If i 4+ j = k (mod 2n — 2), then also
(i+n—1)+(j+n—1) =k (mod 2n — 2). Hence,
if teams ¢ and j of different clubs play each other in
round k, then the other two teams of the same clubs
meet in round k as well. For the matches defined
by the rules (c1)—(c4) the same holds, as can be
verified case by case.

Looking at the rounds 2 to 2n — 1 at club level,
which can be done due to Property IV, we see that
the clubs play exactly a double round robin tour-
nament in these 2n — 2 rounds. Moreover, the two
matches between the same clubs are exactly n — 1
rounds apart. This extra structure can be used
to construct a schedule for a group-balanced sin-
gle round robin tournament with n strength groups
of size 2, in case n is even.

Theorem 2. For every even n and every set of
2n teams, divided into n strength groups contain-



ing two teams each, there exists a group-balanced
single round robin tournament with 2n — 2 breaks.

ProOOF. We consider a set of 2n teams, divided into
n strength groups containing two teams each. It
is easy to see that in a group-balanced SRRT a
team plays against distinct teams j and j' from the
same strength group in two rounds having absolute
difference exactly n and the teams from the same
strength group meet in round n. We prove Theo-
rem 2 by constructing a schedule for such a group-
balanced SRRT using the Adapted Circle Method.

We interpret each strength group as a club, con-
taining exactly two teams. We then construct a
schedule for an SRRT using the Adapted Circle
Method and the home-away pattern set defined in
Lemma 1, like we described in Section 2. It fol-
lows from the proof of Theorem 1 that this sched-
ule satisfies Properties I, II and III. Finally, we
modify this SRRT by rotating every round n — 1
“slots” to the right, that is, round £ becomes round
k+n—2 (mod 2n — 2) 4+ 1. In particular, the first
round is moved to round n. Table 2 provides the
schedule obtained in this way from the schedule in
Table 1.

Firstly, we observe that the obtained schedule is
group-balanced. As we noted before, the Adapted
Circle Method yields a schedule such that for each
strength group the matches against the two teams
in another strength group are carried out in two
rounds that differ n — 1. Hence, after rotating,
these matches are played in rounds with difference
exactly n. Thus, the schedule is group-balanced.

Secondly, we show that the number of breaks is
2n — 2. Note that, in an SRRT with a minimum
number of breaks, for two teams the last entry of
the home-away pattern equals the first entry (home-
home or away-away). Hence we could say that these
teams have a break in the first round, implying that
each team has exactly one break. Note that by
rotating rounds we do not destroy this property.
Hence, the modified schedule has a minimum num-
ber of breaks if and only if two teams have a break in
the first round. The Adapted Circle Method yields
a timetable in which teams In and £n — 1 have a
break in round n + 1, which becomes round 1 after
rotating. Thus, the obtained schedule has the min-
imum number of breaks. In Table 2 we can see that
for the teams %n and %n — 1 either the first or the
last match lies in the band, which illustrates their
breaks in the first round. O

4. Conclusions

Our construction only works for an even number
of clubs. Formulating the problem as an ILP model
and solving for small instances (n = 3 and n = 5)
suggests that for an odd number of clubs an SRRT
with Properties I, IT and III does not exist. It is
known that in any schedule for an SRRT with 2n
teams in which each team has at most one break,
the 2n teams can be grouped into n disjoint pairs
in such a way that each pair of teams plays compli-
mentary [3]. This implies that any schedule for an
SRRT with Property I automatically satisfies Prop-
erty IT [3]. Tt is remarkable that by adding Property
IIT we seem to lose all odd n. An interesting ques-
tion is what the minimum number of breaks is in a
schedule for an SRRT satisfying Properties II and
IIT in case the number of clubs is odd, and how to
construct such a schedule.

Although we do not know whether an SRRT with
Properties I, IT and III exists for some odd n larger
than 5, we can easily see that no SRRT with Prop-
erties I, II, IIT and IV can exist for any odd n.
In fact, there is no SRRT with Properties III and
IV. Satisfying Property III means that teams of the
same club play against each other in the first round.
Property IV implies that clubs can be grouped in
pairs in each round other than the first round. In
each of those rounds, this leaves a single club if the
total number of clubs is odd. Since every team must
play in every round according to the definition of
a single round robin tournament, the two teams of
this club must play against each other in two differ-
ent rounds. This is not possible in a single round
robin tournament.

The combination of break minimization and fair-
ness with regard to strength groups raises interest-
ing open questions for future research:

e What is the minimum number of breaks in a
group-balanced SRRT with 2n teams and g
strength groups?

e What is the computational complexity of
the break minimization problem for a group-
balanced SRRT?

Our result in Section 3 gives an answer to the first
question for the special case where each strength
group has size 2.
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Round: 1 2 3 4 5 6 7 8 9 10 11
Team 1 -11 7 -8 9 -10 6 -12 -2 3 -4 5
Team 2 -5 6 -11 8 -9 T -10 1 -12 -3 4
Team 3 -4 5 -6 7T -11 8 9 10 -1 2 -12
Team 4 3 1 -5 6 -7 9 -8 12 -10 1 -2

Team 5 2 -3 4 11 -6 10 -7 8 9 12 -1
Team 6 12 -2 3 -4 5 -1 11 7 -8 9 -10
Team 7 10 -1 12 -3 4 -2 5 -6 11 8 -9
Team 8 9 -10 1 -2 12 -3 4 -5 6 -7 11
Team 9 -8 -12 10 -1 2 A4 3 -11 5 -6 7
Team 10 -7 8 -9 -12 1 -5 2 -3 4 -11 6
Team 11 1 -4 2 -5 3 12 -6 9 -7 10 -8
Team 12 -6 9 -7 10 -8 -11 1 -4 2 -5 3

Table 2. A schedule for a group-balanced SRRT with 12 teams, obtained from the schedule in Table 1. The grey
entries formed the band of the original schedule.
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