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Abstract

Motivated by challenges related to domination, connectivity, and information propa-
gation in social and other networks, we initiate the study of the Vector Connectivity
problem. This problem takes as input a graph G and an integer kv for every vertex v of G,
and the objective is to find a vertex subset S of minimum cardinality such that every vertex
v either belongs to S, or is connected to at least kv vertices of S by disjoint paths. If we
require each path to be of length exactly 1, we get the well-known Vector Domination
problem, which is a generalization of the famous Dominating Set problem and several of
its variants. Consequently, our problem becomes NP-hard if an upper bound on the length
of the disjoint paths is also supplied as input. Due to the hardness of these domination
variants even on restricted graph classes, like split graphs, Vector Connectivity seems
to be a natural problem to study for drawing the boundaries of tractability for this type
of problems. We show that Vector Connectivity can actually be solved in polynomial
time on split graphs, in addition to cographs and trees. We also show that the problem
can be approximated in polynomial time within a factor of lnn + 2 on all graphs.

Keywords: vector connectivity, approximation algorithm, polynomial time algorithm,
split graph, cograph, tree

∗A short version of this paper was accepted for presentation at the conference TAMC 2013 [13].
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1 Introduction and Motivation

Connectivity between parts of a graph via disjoint paths is one of the best studied subjects in
graph theory and graph algorithms, where Network Flow and Disjoint Paths and many of
their variants are among the most well-known problems. In this paper, we introduce, motivate,
and study a natural network problem, which we call Vector Connectivity. Given a graph
G = (V,E) and a vector k indexed by the vertices of G, such that k = (kv : v ∈ V ) and kv is
between 0 and the degree of v for each vertex v ∈ V , the task of Vector Connectivity is
to find a set S ⊆ V of minimum cardinality that satisfies the following: every vertex v of G is
either in S or is connected to at least kv vertices of S via paths that pairwise intersect in no
other vertex than v.

In Vector Connectivity there is no restriction on the lengths of the involved disjoint
paths. If each path is restricted to be of length exactly 1, we get the well-known Vector
Domination problem; this problem was introduced by Harant et al. [10] as a generalization
of the classical problems Dominating Set and Vertex Cover. The Dominating Set
problem and its variants have been studied extensively, as they naturally appear in a wide
variety of theoretical and practical applications. This has led to a vast amount of papers and
several books on domination, e.g., [11, 12]. Dominating Set and hence Vector Domination
are also among the toughest NP-hard problems as they remain NP-hard on various classes of
graphs, such as planar graphs of maximum degree 3, bipartite graphs, and most interesting for
our study: split graphs [6, 12]. The popularity and the difficulty of these domination problems,
the connection between Vector Domination and Vector Connectivity, and the question
whether allowing paths of unbounded length rather than direct edges or bounded-length paths
can result in tractability, are among the motivations for studying the Vector Connectivity
problem.

Chleb́ık and Chleb́ıková [1] showed that Dominating Set, and consequently Vector
Domination, cannot be approximated in polynomial time within a factor of (1− ε) lnn for any
constant ε > 0 unless NP ⊆ DTIME(nO(log log n)), even when restricted to the class of bipartite
graphs or split graphs. On the positive side, Cicalese et al. [3] presented a greedy algorithm for
Vector Domination with approximation factor ln(2∆) + 1, where ∆ denotes the maximum
degree of the input graph. Moreover, they showed that the problem can be solved in polynomial
time on trees and cographs. If one asks for disjoint paths of bounded length rather than direct
edges, it is not known in general whether the problem can be approximated within a factor of
O(log n). This gives another motivation to study the unbounded-length paths case, which is
exactly the Vector Connectivity problem.

In this paper, we show that Vector Connectivity can be approximated within a factor
of lnn + 2 in polynomial time on general graphs, which we find interesting due to the known
and unknown approximation results mentioned above. Furthermore, we show that Vector
Connectivity can be solved in polynomial time on split graphs, cographs, and trees. We
find in particular the tractability result on split graphs surprising, as it is in contrast with the
aforementioned NP-hardness and inapproximability results for the Dominating Set problem
on split graphs. Furthermore, these intractability results imply that if paths are required to be
of length at most an input bound then the problem remains NP-hard on split graphs. However,
split graphs do not have any induced paths of length 4 or more. Hence our positive result on
split graphs implies that the bounded-length path version of Vector Connectivity, which
is a generalization of Vector Domination, is solvable in polynomial time on split graphs if
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the bound is at least 3.
Note that the classes of split graphs, cographs, and trees are all subclasses of perfect graphs,

but they are not contained in each other. They form some of the most studied graph classes
on which many algorithms have been given, and they play the main role in several books, e.g.,
in the monograph on perfect graphs by Golumbic [7], and in the monograph by Mahadev and
Peled [15] on threshold graphs, which form a subclass of both split graphs and cographs.

Before we proceed to the technical part presenting and proving our results, we end this
section by mentioning another motivation, which comes from information propagation in social
networks. One famous problem of this type is Target Set Selection (see, e.g., [2, 14, 16]),
where every vertex v has a threshold tv such that v gets activated if at least tv of its neighbors
are activated, and the task is to select a minimum cardinality vertex subset that results in
the activation of all vertices eventually. The practical application behind this problem is the
desire by manufacturers to give away their products to a selected small group of people, based
on the scenario that every potential customer will decide to buy the product if he or she has
enough friends who possess the product. Another possible scenario can be that every potential
customer will decide to buy the product only if he or she has enough independent ways to
learn about the product. Vector Connectivity fits into this scenario if we assume that
information spreads freely along the paths of the network.

2 Definitions and Notation

Unless otherwise stated, we work with undirected simple graphs G = (V,E), where V is the set
of vertices, E is the set of edges, and |V | is denoted by n. We use standard graph terminology.
In particular, the degree of a vertex v in G is denoted by dG(v), the maximum degree of a
vertex in G is denoted by ∆(G), and V (G) refers to the vertex set of G. For a given rooted
tree T , we write Tv to denote the subtree rooted at vertex v, including vertex v.

Given a graph G = (V,E), a set S ⊆ V and a vertex v ∈ V \ S, a v–S fan of order k is
a collection of k paths P1, . . . , Pk such that (1) every Pi is a path connecting v to a vertex
of S, and (2) the paths are pairwise vertex-disjoint except at v, i.e., for all 1 ≤ i < j ≤ k,
it holds that V (Pi) ∩ V (Pj) = {v}. Given an integer-valued vector k = (kv : v ∈ V ) with
kv ∈ {0, 1, . . . , dG(v)} for every v ∈ V , a vector connectivity set for (G,k) is a set S ⊆ V such
that there exists a v–S fan of order kv for every v ∈ V \S. We say that kv is the requirement of
vertex v. The minimum size of a vector connectivity set for (G,k) is denoted by κ(G,k).

The Vector Connectivity problem is the problem of finding a vector connectivity set of
minimum size, and can be formally stated as follows:

Vector Connectivity

Input: A graph G = (V,E) and a vector k = (kv : v ∈ V ) ∈ ZV
+

with kv ∈ {0, 1, . . . , dG(v)} for all v ∈ V .
Task: Find a vector connectivity set for (G,k) of size κ(G,k).

For every v ∈ V and every set S ⊆ V \ {v}, we say that v is k-connected to S if there is
a v–S fan of order k in G. Hence, given an instance (G,k) of Vector Connectivity, a set
S ⊆ V is a vector connectivity set for (G,k) if and only if every v ∈ V \S is kv-connected to S.
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For a subset A ⊆ V , we write k|A to denote the sub-vector of k indexed by elements of A, and
1A denotes the all-one vector indexed by elements of A. We let σ(v,A) to denote the maximum
order of a v–A fan in G. In other words, σ(v,A) = max{s | v is s-connected to A}. Let B ⊆ A,
let A be a v–A fan and let B be a v–B fan. We say that A contains B if the collection of paths
in B is a subcollection of the paths in A.

A set of vertices in a graph is a clique if they are all pairwise adjacent, and it is an independent
set if no two of them are adjacent. A graph is a split graph if its vertex set can be partitioned
into a clique C and an independent set I, where (C, I) is called a split partition of G. Split
graphs can be recognized and a split partition can be computed in linear time [9].

For two vertex-disjoint graphs G1 and G2, G1⊕G2 denotes the disjoint union of G1 and G2,
i.e., G1 ⊕G2 = (V (G1)∪ V (G2), E(G1)∪E(G2)), and G1 ⊗G2 denotes the join of G1 and G1,
i.e., the graph obtained by adding to G1⊕G2 all edges of the form {uv | u ∈ V (G1) , v ∈ V (G2)}.
The class of cographs is defined recursively through the following operations: a single vertex is
a cograph; if G1 and G2 are vertex-disjoint cographs, then G1 ⊕G2 is a cograph; if G1 and G2

are vertex-disjoint cographs, then G1 ⊗G2 is a cograph. Cographs, split graphs, and trees are
not related to each other inclusion-wise.

A well-known characterization of cographs is via cotrees. A cotree T of a cograph G is
a rooted tree with two types of interior nodes, ⊕-nodes and ⊗-nodes, that has the following
property: there is a bijection between the vertices of G and the leaves of T such that two
vertices u and v are adjacent in G if and only if the lowest common ancestor of the leaves u
and v in T is a ⊗-node. In particular, every node t of T corresponds to an induced subgraph of
G, which is the disjoint union or the join of the subgraphs of G corresponding to the children
of t. A graph is a cograph if and only if it has a cotree [4]. Cographs can be recognized and
a cotree can be generated in linear time [5, 8]. For our purposes, it is convenient to use the
binary version of a cotree, which is commonly used for algorithms on cographs: the recursive
definition of cographs implies that we can assume the cotree to be binary. We will call this a
nice cotree. Clearly, given a cotree of a cograph, a nice cotree can be obtained in linear time.

3 A Polynomial-Time Approximation Algorithm

In this section, we show that Vector Connectivity can be approximated in polynomial
time by a factor of lnn + 2 on all graphs. We will achieve this by showing that Vector
Connectivity can be recast as a particular case of the well-known Minimum Submodular
Cover problem, which will allow us to apply a classical approximation result due to Wolsey [22].

First, we recall some definitions and results about submodular functions, hypergraphs and
matroids that we will use in our proofs (see, e.g., [20]). Given a finite set U , a function
g : 2U → Z+ is submodular if for every X,Y ⊆ U with X ⊆ Y and every x ∈ U \Y , we have that
g(Y ∪{x})−g(Y ) ≤ g(X∪{x})−g(X). An instance of the (unweighted) Minimum Submodular
Cover problem consists of a set U and an integer-valued, non-decreasing, submodular function
g : 2U → Z+. The objective is to pick a set S ⊆ U of minimum cardinality such that g(S) =
g(U).

A hypergraph is a pair H = (U, E) where U is a finite set of vertices and E is a set of subsets
of U , called hyperedges. A matroid is a hypergraph M = (U,F) such that F is nonempty
and closed under taking subsets, and its elements, called independent sets, satisfy the following
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“exchange property”: for every two independent sets A and B such that |A| < |B|, there exists
an element of B whose addition to A results in a larger independent set. (This is just one of
the many equivalent ways to define matroids, see, e.g., [17, 21].) Given a matroid M = (U,F),
the rank function of M is the function rM : 2U → Z+ that assigns to every subset S of U the
maximum size of an independent set contained in S. The following property of rank functions
of matroids is well known (see, e.g., [20]).

Lemma 1. For every matroid M , its rank function rM is submodular.

A gammoid is a hypergraph Γ = (U, E) derived from a triple (D,S, T ) where D = (V,A) is
a digraph and S, T ⊆ V , such that U = S and a subset S′ of S forms a hyperedge if and only
if there exist |S′| vertex-disjoint directed paths in D connecting S′ to a subset of T .

Lemma 2 ([18, 19]). Every gammoid is a matroid.

For any instance (G = (V,E),k) of Vector Connectivity, we define a function f :
2V −→ Z+ as follows:

f(X) =
∑

v∈V fv(X) , where X ⊆ V , and

fv(X) =

{
min{σ(v,X), kv} if v 6∈ X;

kv if v ∈ X.

(1)

Observe that a set S ⊆ V satisfies f(S) = f(V ) if and only if S is a vector connectivity set
for (G,k). Consequently, Lemma 3 below immediately implies that Vector Connectivity
is a special case of Minimum Submodular Cover.

Lemma 3. Let (G = (V,E),k) be an instance of Vector Connectivity. Then the function
f : 2V −→ Z+, given by (1), satisfies the following properties:

(i) f(∅) = 0;

(ii) f is integer-valued, i.e., f(X) ∈ Z+ for every X ⊆ V ;

(iii) f is non-decreasing, i.e., f(X) ≤ f(Y ) whenever X ⊆ Y ⊆ V ;

(iv) f is submodular.

Proof. It is easy to verify that properties (i)–(iii) hold. In order to show that f is submodular,
it suffices to show that all the functions fv(·) are submodular, that is, that for all X ⊆ Y ⊆ V
and for all w ∈ V \ Y ,

fv(Y ∪ {w})− fv(Y ) ≤ fv(X ∪ {w})− fv(X) . (2)

Suppose first that fv(Y ) = kv. Then fv(Y ∪{w}) = kv and the left-hand side of inequality (2)
is equal to 0. Hence inequality (2) holds since fv is non-decreasing.

Now suppose that fv(Y ) < kv, which implies that fv(Y ) = σ(v, Y ). If fv(X ∪ {w}) = kv,
then fv(Y ∪{w}) = kv and inequality (2) holds due to the fact that fv is non-decreasing. In what
follows, we assume that fv(X ∪ {w}) < kv, which implies that fv(X ∪ {w}) = σ(v,X ∪ {w}),
and also that v 6= w. Since σ(v, Y ∪{w}) ≤ σ(v, Y ) + 1 ≤ kv, we have, by the definition of fv(·)
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and using the fact that v 6∈ Y ∪{w}, the equality fv(Y ∪{w}) = σ(v, Y ∪{w}). Since fv is non-
decreasing, fv(Y ) < kv implies that fv(X) < kv, and hence fv(X) = σ(v,X). Inequality (2)
then simplifies to

σ(v, Y ∪ {w})− σ(v, Y ) ≤ σ(v,X ∪ {w})− σ(v,X) . (3)

Hence, in order to prove Lemma 3, it suffices to show that inequality (3) holds for any fixed
vertex v ∈ V , i.e., that the function gv : 2V \{v} −→ Z+, defined by gv(W ) = σ(v,W ) for all
W ⊆ V \{v}, is submodular. Consider the gammoid Γ derived from the triple (D,V \{v}, NG(v))
where D is the digraph obtained from G by replacing each edge with a pair of oppositely directed
arcs. By Lemma 2, Γ is a matroid. It follows directly from the definition that function gv is
equal to the rank function rΓ of Γ. Therefore, by Lemma 1, the function gv is submodular,
which completes the proof of Lemma 3.

Theorem 1. Vector Connectivity can be approximated within a factor of lnn + 2 in
polynomial time.

Proof. Let (G = (V,E),k) be an instance of Vector Connectivity with |V | = n. From the
definition of the function f , given by (1), it follows that a set S ⊆ V satisfies f(S) = f(V ) if
and only if S is a vector connectivity set for (G,k). Hence, an optimal solution to the Vector
Connectivity problem is provided by a minimum size subset S ⊆ V such that f(S) = f(V ),
i.e., by an optimal solution for Minimum Submodular Cover. An approximation to such a
set S can be found in the following way.

Let A denote the natural greedy strategy which starts with S = ∅ and iteratively adds
to S the element v ∈ V \ S such that f(S ∪ {v}) − f(S) is maximum, until f(S) = f(V ) is
achieved. The maximum order of a v–S fan can be computed in polynomial time using an easy
reduction to the well-known Maximum Flow problem, and thus the function f is polynomially
computable. Therefore, the greedy strategy can be implemented in polynomial time. Moreover,
Wolsey [22] proved that if f satisfies the four properties listed in Lemma 3, then algorithm A
is an H(τ)-approximation algorithm for Minimum Submodular Cover, and consequently

for Vector Connectivity, where H(j) =
∑j

i=1
1
i denotes the j-th harmonic number, and

τ = maxy∈V f({y})− f(∅). For every y ∈ V , we have

f({y}) =
∑

v∈V \{y}

fv({y}) + fy({y}) ≤ n− 1 + ky ≤ n+ ∆(G) .

Since f(∅) = 0, this implies τ ≤ n+∆(G). Hence, algorithm A is an H(n+∆(G))-approximation
algorithm for Vector Connectivity. Since H(n) ≤ lnn+ 1 for n ≥ 1, we can further bound
the approximation ratio ρ of A from above as follows:

ρ ≤ H(n+ ∆(G)) ≤ ln(n+ ∆(G)) + 1 ≤ ln(2n) + 1 = lnn+ ln 2 + 1 ≤ lnn+ 2 ,

yielding the desired result.

4 A Polynomial-Time Algorithm for Split Graphs

Recall that the Vector Domination problem on split graphs is both NP-hard and hard to
approximate within a factor of (1 − ε) lnn for any constant ε > 0. In this section, we give a
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polynomial-time algorithm to solve the Vector Connectivity problem on split graphs. Our
algorithm is based on the following lemma.

Lemma 4. Let (G,k) be an instance of Vector Connectivity, where G is a split graph. Let
S be any set of vertices in G such that ku ≥ kv for every pair of vertices u ∈ S and v ∈ V (G)\S.
Then there exists a v–S fan of order min{kv, |S|} for every v ∈ V (G) \ S.

Proof. Let (C, I) be a split partition of G = (V,E), and for convenience let SI = S ∩ I and
SC = S∩C. We will call the vertices of V \S free vertices. Let v be a free vertex of G. We first
show that every vertex u ∈ SI has at least kv − |SC | free neighbors. To see this, let u ∈ SI . It
is obvious that u has at least dG(u)− |SC | free neighbors. Since u ∈ S and v ∈ V \ S, we have
that kv ≤ ku. This, together with the assumption that kv ≤ dG(v) for every v ∈ V , implies
that u has at least dG(u)− |SC | ≥ ku − |SC | ≥ kv − |SC | free neighbors.

Suppose that v is a vertex of C. Every vertex of SC is a neighbor of v, and thus v is
min{kv, |SC |}-connected to SC . If kv ≤ |SC | then the lemma follows, so assume that kv > |SC |.
Recall that every vertex u ∈ SI has at least kv − |SC | free vertices in its neighborhood. Let
S′ ⊆ SI be any subset of SI such that |S′| = min{kv − |SC |, |SI |}. Let G′ be the bipartite
subgraph of G obtained from the subgraph of G induced by S′ ∪ (NG(S′) \ SC) by deleting
all edges of the form {xy | x, y ∈ NG(S′)}. Since |S′′| ≤ |NG′(S′′)| for every subset S′′ ⊆ S′,
Hall’s Theorem implies that there is a matching M in G′ that saturates S′. Let Y be the set
of endpoints of M that are not in S′. Then Y ⊆ C, and it is possible that v ∈ Y . Since both v
and all the vertices of Y belong to the clique C, v can reach at least |S′| = min{kv − |SC |, |SI |}
vertices of SI via disjoint paths that do not contain vertices of SC , using the edges of M .
Consequently, v is min{kv, |S|}-connected to S, and the lemma follows.

Suppose now that v is a vertex of I. Since kv ≤ dG(v), v is min{kv, |SC |}-connected to
SC . Let PC be a v–SC fan of order min{kv, |SC |} that is of smallest total path length. In
particular, every path in PC is of length 1 or 2. If kv ≤ |SC | then the lemma follows, so
assume that kv > |SC |. In this case, exactly |SC | neighbors of v are used by the paths in PC .
However, v has at least dG(v)− |SC | ≥ kv − |SC | additional neighbors that are free vertices in
C. Furthermore, we already proved that every u ∈ SI has at least kv − |SC | free vertices in
its neighborhood. Each such vertex is either a neighbor of v or a neighbor of a neighbor of v.
Thus v can reach at least min{kv − |SC |, |SI |} vertices of SI via disjoint paths that intersect
each other and the paths of PC only in vertex v. This shows that v is min{kv, |S|}-connected
to S, and the lemma follows.

Lemma 4 implies that we can sort the vertices of G by their k-values in non-increasing order,
and greedily pick vertices from the start of the sorted list to be in S until we have a vector
connectivity set. This is formalized in the proof of the following theorem.

Theorem 2. Vector Connectivity can be solved in polynomial time on split graphs.

Proof. Let (G,k) be an instance of Vector Connectivity, where G = (V,E) is a split
graph with split partition (C, I). Given a subset S ⊆ V , we define n(v) = kv − max{t |
v is t-connected to S} for every vertex v ∈ V \ S. Then, for every v ∈ V \ S, n(v) ≤ 0 if and
only if v is kv-connected to S. In particular, if n(v) > 0 for some vertex v ∈ V \ S, then there
exists a v–S fan of order kv −n(v) in G but no v–S fan of order at least kv −n(v) + 1. Clearly,
S is a vector connectivity set for (G,k) if and only if n(v) ≤ 0 for every v ∈ V \ S.
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Lemma 4 suggests the following algorithm. We start by sorting the vertices ofG as v1, v2, . . . ,
vn so that kvi ≥ kvj for every 1 ≤ i < j ≤ n. We set S = ∅ and i = 0. Then, as long as there
are vertices v ∈ V \S such that n(v) > 0, we increase i by 1 and add vertex vi to S. If n(v) ≤ 0
for every vertex v ∈ V \ S, then the algorithm outputs the set S and terminates.

Let us prove that the algorithm is correct. Since the algorithm stops only when n(v) ≤ 0 for
every vertex v ∈ V \S, the set S output by the algorithm is a vector connectivity set for (G,k).
It remains to show that there is no vector connectivity set S′ for (G,k) such that |S′| < |S|. As
a result of Lemma 4, every time we add a vertex u to S, n(v) does not increase for any vertex
v ∈ V \S, and n(v) decreases by exactly 1 for every vertex v ∈ V \S for which n(v) > 0 before
u was added to S. This implies that when the algorithm terminates, there is a vertex v ∈ V \S
such that kv = |S|. Consequently, any vector connectivity set for (G,k) must either contain at
least |S| vertices or contain v. Let S′ be a vector connectivity set for (G,k) and assume, for
contradiction, that |S′| < |S|. Then S′ contains v by the above arguments, and there exists a
vertex u ∈ S \S′. Since ku ≥ kv = |S| and u is ku-connected to S′, we find that S′ must contain
at least |S| vertices, contradicting the assumption that |S′| < |S|. This finishes the correctness
proof of the algorithm. It is clear that the algorithm runs in polynomial time.

5 A Polynomial-Time Algorithm for Cographs

In this section we show that Vector Connectivity can be solved in polynomial time on
cographs. We will in fact solve the following more general variant of Vector Connectivity.
For a graph G = (V,E), an integer-valued vector k = (kv : v ∈ V ), and an integer `, we say
that a set S ⊆ V is a vector connectivity set for (G,k, `) if S is a vector connectivity set for
(G,k) such that v ∈ S whenever kv ≥ `. Let us denote by κ(G,k, `) the minimum size of a
vector connectivity set for (G,k, `). Since S = V is a vector connectivity set for (G,k, `), the
above parameter is well defined and satisfies κ(G,k, `) ≤ |V |. Clearly, the following relation
holds, and hence solving the described variant indeed also solves Vector Connectivity.

Lemma 5. κ(G,k) = κ(G,k,maxv∈V kv + 1).

In order to simplify the presentation of our algorithm, we assume in this section that in the
input to the Vector Connectivity problem and its variant mentioned above, requirements
kv are allowed to be negative. If kv < 0, no condition is imposed on vertex v, and it can be
treated the same as if kv = 0.

The first lemma below is an easy observation.

Lemma 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅, and let
G = G1 ⊕G2. Then it holds that

κ(G,k, `) = κ(G1,k|V (G1), `) + κ(G2,k|V (G2), `) .

Lemma 7. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅, and let
G = G1 ⊗ G2. Let n1 = |V1| and n2 = |V2|, and let F = {0, 1, . . . , n1} × {0, 1, . . . , n2}. For
every integer `, it holds that

κ(G,k, `) = min
(i,j)∈F

f(i, j)

with
f(i, j) = max

{
κ
(
G1,k

1ij , `ij1

)
, i
}

+ max
{
κ
(
G2,k

2ij , `ij2

)
, j
}
,
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where

• k1ij = k|V1
−min{i+ j, n2} · 1V1

,

• k2ij = k|V2
−min{i+ j, n1} · 1V2

,

• `ij1 = min{`, i+ j + 1} −min{i+ j, n2} ,

• `ij2 = min{`, i+ j + 1} −min{i+ j, n1} .

Proof. First, we show that min(i,j)∈F f(i, j) ≤ κ(G,k, `). Let S ⊆ V be a minimum vector
connectivity set for (G,k, `), that is, |S| = κ(G,k, `), S is a vector connectivity set for (G,k),
and v ∈ S for all v ∈ V such that kv ≥ `. Let Si = S ∩ Vi, for i = 1, 2, and let I = |S1| and
J = |S2|.

Claim 1. κ
(
G1,k

1IJ , `IJ1

)
≤ I

In order to prove Claim 1, it is enough to argue that S1 is a vector connectivity set for
(G1,k

1IJ , `IJ1 ), Equivalently, it suffices to prove that:

(i) for every v ∈ V1 \ S1, there exists a v–S1 fan in G1 of order k1IJ
v = kv −min{I + J, n2},

and

(ii) for every v ∈ V1 such that

k1IJ
v ≥ `IJ1 = min{`, I + J + 1} −min{I + J, n2} ,

it holds that v ∈ S1.

Let us first show that condition (i) follows from the fact that S is a vector connectivity set for
(G,k). Indeed, for every v ∈ V1 \ S1 = V1 \ S, there exists a v–S fan of order kv in G. Let P
be a v–S fan of maximum order in G that minimizes the number of paths entirely contained
in G1, and, subject to this condition, is of smallest total path length. Then P contains all J
one-edge paths of the form (v, x) where x ∈ S2. Moreover, P contains as many two-edge paths
of the form (v, x, y) as possible, where x ∈ V2 \ S2 and y ∈ S1; this number of paths is equal
to min{I, n2 − J}. Every other path of P is entirely contained in G1. Hence, the number of
paths in P entirely contained in G1 is equal to |P| − J − min{I, n2 − J}, which is at least
kv −min{I + J, n2} = k1IJ

v . This shows that condition (i) holds.
To show (ii), suppose that v ∈ V1 is a vertex with k1IJ

v ≥ `IJ1 , that is,

kv −min{I + J, n2} ≥ min{`, I + J + 1} −min{I + J, n2} ,

or, equivalently,
kv ≥ min{`, I + J + 1} . (4)

We want to show that v ∈ S1. Suppose, for contradiction, that v ∈ V1 \ S1. Since S is a
vector connectivity set for (G,k, `) and v 6∈ S, we have that kv ≤ ` − 1 and kv ≤ |S| = I + J .
Therefore, kv ≤ min{`−1, I+J} = min{`, I+J+1}−1, in contradiction with (4). This shows
that v ∈ S1.

With an analogous argument, one can prove the following claim.
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Claim 2. κ
(
G2,k

2IJ , `IJ2

)
≤ J

Claims 1 and 2 together imply that f(I, J) = I + J , and consequently min(i,j)∈F f(i, j) ≤
f(I, J) = I + J = |S| = κ(G,k, `).

Now we show that κ(G,k, `) ≤ min(i,j)∈F f(i, j). Let (I, J) be a pair from F such that
f(I, J) = min(i,j)∈F f(i, j). Write min(i,j)∈F f(i, j) = m1 +m2, where

m1 = max
{
κ
(
G1,k

1IJ , `IJ1

)
, I
}

and
m2 = max

{
κ
(
G2,k

2IJ , `IJ2

)
, J
}
.

Let S′
1 and S′

2 be minimum vector connectivity sets for (G1,k
1IJ , `IJ1 ) and (G2,k

2IJ , `IJ2 ),
respectively. For i = 1, 2, let Si ⊆ Vi be a set of size mi containing S′

i. Set S = S1 ∪ S2. To
show that κ(G,k, `) ≤ min(i,j)∈F f(i, j), it suffices to show that S is a vector connectivity set
for (G,k, `). Equivalently, it suffices to prove that:

(i) for every v ∈ V \ S, there exists a v–S fan in G of order kv, and

(ii) for every v ∈ V such that kv ≥ `, it holds that v ∈ S.

Let v ∈ V \ S. Suppose that v ∈ V1 \ S1. Let P be a v–S1 fan in G1 of order k1IJ
v =

kv − min{I + J, n2}. Then, P is also a v–S fan in G. Extend P to a larger v–S fan in G by
adding to it all m2 one-edge paths of the form (v, x) where x ∈ S2, and as many two-edge paths
of the form (v, x, y) as possible, where x ∈ V2 \ S2 and y ∈ S1; the number of these two-edge
paths is equal to min{n2 −m2,m1 − k1IJ

v }. The total number of paths in the so constructed
v–S fan is equal to

|P|+m2 + min{n2 −m2,m1 − k1IJ
v } = min{k1IJ

v + n2,m1 +m2}
≥ min{k1IJ

v + n2, I + J} .

We would like to show that min{k1IJ
v + n2, I + J} ≥ kv, or, equivalently, that

k1IJ
v + n2 ≥ kv (5)

and
I + J ≥ kv . (6)

Inequality (5) follows directly from the definition of k1IJ
v . Since S1 is a vector connectivity set

for (G1,k
1IJ , `IJ1 ) and v ∈ V1 \ S1, it follows that

k1IJ
v ≤ `IJ1 − 1 ,

that is,
kv −min{I + J, n2} ≤ min{`− 1, I + J} −min{I + J, n2} ,

or, equivalently,
kv ≤ min{`− 1, I + J} .
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In particular, comparing kv to the second term in the above minimum yields the desired in-
equality (6). This shows that for every v ∈ V1 \ S1, there exists a v–S fan in G of order kv.
We can show similarly that for every v ∈ V2 \ S2, there exists a v–S fan in G of order kv. This
shows (i).

To show (ii), let v ∈ V such that kv ≥ `. We need to show that v ∈ S. Without loss of
generality, assume that v ∈ V1. The condition kv ≥ ` implies that

k1IJ
v = kv −min{I + J, n2} ≥ `−min{I + J, n2} ≥ `IJ1 ,

which implies that v ∈ S1 due to the fact that S1 is a vector connectivity set for
(G1,k

1IJ , `IJ1 ). Hence, v ∈ S. This shows that condition (ii) holds, and hence that
κ(G,k, `) ≤ min(i,j)∈F f(i, j). We conclude that κ(G,k, `) = min(i,j)∈F f(i, j).

Theorem 3. Vector Connectivity can be solved in polynomial time on cographs.

Proof. Consider the input (G = (V,E),k) to the Vector Connectivity problem, where G is
a cograph and n = |V |. By Lemma 5, computing the value of κ(G,k) is equivalent to computing
the value of κ(G,k,K) with K = maxv∈V kv + 1. We compute this value as follows. First, we
compute a nice cotree T of G. We traverse T bottom up, processing a node only after all its
children have been processed. When processing a node t of T , we compute all O(n2) values of

κ(H,k|V (H) − i · 1V (H), `) , i ∈ {0, 1, . . . , n}, ` ∈ {0, 1, . . . ,K} ,

where H is the induced subgraph of G corresponding to the subtree Tt. For every leaf of the
cotree, corresponding to a single vertex v of G, each of the O(n2) values can be computed in
O(1) time as follows:

κ(({v}, ∅), kv − i, `) =

{
0 if kv − i ≤ min{`− 1, 0} ,
1 otherwise.

Depending on whether an internal node t is a ⊕-node or a ⊗-node, we can use Lemma 6
or Lemma 7 to compute each of the O(n2) values of κ(H,k|V (H) − i · 1V (H), `) in time O(n2).
Hence, each internal node of the modified cotree can be processed in time O(n4), yielding an
overall time complexity of O(n5), since a cotree has O(n) nodes.

A minimum vector connectivity set can also be computed in the stated time. In addition
to the values of κ(H,k|V (H) − i · 1V (H), `) at each node of the cotree, we need to store also a
minimum vector connectivity set achieving each of these values. These sets can be computed
recursively as follows. For an internal node t with corresponding subgraph H, let H1 and H2

denote the subgraphs of G corresponding to the two children of t in T .

• If H corresponds to a leaf of T , then V (H) = {v} for some v ∈ V , and a minimum
vector connectivity set for (H, kv − i, `) is either empty or {v}, depending on whether
kv − i ≤ min{`− 1, 0} or not.

• If H = H1 ⊕H2, then a minimum vector connectivity set for (H,k|V (H) − i · 1V (H), `) is
given by the union of minimum vector connectivity sets for (H1,k|V (H1)− i ·1V (H), `) and
(H2,k|V (H2) − i · 1V (H), `).
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• If H = H1 ⊗H2, then a minimum vector connectivity set S for (H,k|V (H) − i · 1V (H), `)
can be computed in O(n2) time: first compute a pair (I, J) minimizing the function f
defined in Lemma 7 (with H, H1, H2 in place of G, G1, G2, respectively), and then
take the union of minimum vector connectivity sets S′

1 and S′
2 for (H1,k

1IJ , `IJ1 ) and
(H2,k

2IJ , `IJ2 ), together with some extra vertices if necessary so that |S ∩ V (H1)| ≥ I
and |S ∩ V (H2)| ≥ J .

Finally, let us remark that all the instances (H,k′, `) for which κ(H,k′, `) must be evaluated
in order to compute the value of κ(G,k) = κ(G,k,maxv∈V kv + 1) satisfy the property that for
all v ∈ V (H), either k′v ≤ dH(v) or k′v ≥ `. This can be proved by induction on the distance of
a node t representing H from the root of the cotree T , and assures that the values of κ(H,k′, `)
are well defined for such instances. This completes the proof of Theorem 3.

6 A Polynomial-Time Algorithm for Trees

We have seen that Vector Connectivity is solvable in polynomial time on cographs and split
graphs. These two graph classes do not contain graphs with long induced paths. In particular,
cographs are equivalent to graphs that do not have induced paths of length 3 or more [5], and
it is easy to observe that split graphs do not contain induced paths of length 4 or more. In this
section, we give a polynomial-time algorithm to solve the Vector Connectivity problem on
trees, a graph class that allows the existence of arbitrarily long induced paths.

Theorem 4. Vector Connectivity can be solved in polynomial time on trees.

Proof. Let (T,k) be an instance of Vector Connectivity, where T = (V,E) is a tree.
We assume that T has at least two vertices and is rooted at an arbitrary vertex r. Since the
requirements of the vertices do not change during the execution of the algorithm, we will simply
speak of a vector connectivity set for Tv instead of a vector connectivity set for (Tv,k|V (Tv)),
for every v ∈ V .

The idea of the algorithm is to construct a vector connectivity set for T of minimum size,
starting from the leaves of T and processing a vertex only after all its children have been
processed. At any step of the algorithm, let S ⊆ V be the set of vertices that have thus far
been chosen to belong to the solution. For any vertex v of T , we define Sv = S ∩ V (Tv). When
processing a vertex v, the algorithm computes the values f(v), n(v) and r(v), which are defined
as follows. For every vertex v ∈ V , f(v) = 1 if the subtree Tv contains at least one vertex of S;
otherwise f(v) = 0. The value r(v) denotes the number of children w of v for which f(w) = 1.
Note that if f(w) = 1 for a child w of vertex v, then v is 1-connected but not 2-connected to
Sw, regardless of how many vertices Sw contains. Furthermore, v is 1-connected to S \ V (Tv)
if S contains a vertex outside Tv. We let n(v) denote whether or not a vertex in Tv “needs” an
additional path to a vertex outside of Tv, indicated by 1 or 0, for every v ∈ V . More precisely,
n(v) = 0 if for every vertex w ∈ V (Tv), there is a w–Sv fan of order kw in Tv, i.e., every vertex
w of Tv, including v itself, is kw-connected to Sv and hence also to S. On the other hand,
n(v) = 1 if there is a vertex w ∈ V (Tv) such that there is a w–Sv fan of order kw − 1 but no
w–Sv fan of order kw in Tv.

We now describe the algorithm in detail. Initially, we set S = ∅. Let v ∈ V be a leaf of T .
We set r(v) = 0. If kv = 0, then we set f(v) = 0 and n(v) = 0. If kv = 1, then we set f(v) = 0
and n(v) = 1.
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Next, let v be a vertex that is not a leaf and not the root, and assume that the children of
v have all been processed. For every child w of v, if n(w) = 1 and v has a child w′ 6= w such
that f(w′) = 1, then we set n(w) = 0. We then compute r(v) by adding up the f -values of all
the children of v. If kv ≤ r(v), then we set n(v) = 1 if v has a child w with n(w) = 1, and we
set n(v) = 0 otherwise. If kv = r(v) + 1, then we set n(v) = 1. If kv ≥ r(v) + 2, then we add v
to S and set n(v) = 0. In each of the above cases, we set f(v) = 1 if r(v) ≥ 1 or if v is added
to S, and we set f(v) = 0 otherwise.

Finally, let v be the root of T . We set n(v) = 0. If kv ≤ r(v), then we perform the following
check: if v has a child w such that n(w) = 1 and f(w′) = 0 for every other child w′ 6= w of v,
then we add v to S. If kv ≥ r(v) + 1, then we add v to S. The algorithm outputs the set S and
terminates as soon as the root has been processed.

In order to prove the correctness of the algorithm, we prove that, for every v ∈ V , the
following three statements are true immediately after v is processed, where p denotes the parent
of v in T .

(i) If n(v) = 0, then Sv is a vector connectivity set for Tv.

(ii) If n(v) = 1, then Sv ∪ {p} is a vector connectivity set for the subtree of T induced by
V (Tv) ∪ {p};

(iii) There is no vector connectivity set S′ for T such that |S′ ∩ V (Tv)| < |Sv|.

Assume first that v is a leaf. Then dT (v) = 1, so kv ∈ {0, 1}. Note that the algorithm does
not add v to S, regardless of whether kv = 0 or kv = 1. Hence Sv = ∅, and statement (iii)
trivially holds in both cases. If kv = 0, then we set n(v) = 0, and it is clear that all statements
are satisfied in this case. If kv = 1, then we set n(v) = 1. Since the set {p} consisting of the
parent of v is a vector connectivity set for the subtree of T induced by V (Tv) ∪ {p}, statement
(ii) holds.

Assume now that v is not a leaf and not the root. We again distinguish two cases, depending
on whether or not v is added to S by our algorithm. Suppose v is added to S. Then kv ≥ r(v)+2,
and we set n(v) = 0 in this case. Since v is added to S, we have that every descendant w of v with
n(w) = 1 becomes kw-connected to Sv, so statement (i) holds. To see why statement (iii) holds
in this case, let S′ be any vector connectivity set for T . We know that |S′ ∩ V (Tw)| ≥ |Sw|
for every child w of v, since statement (iii) holds for every child w. Hence, if v ∈ S′, then
|S′ ∩V (Tv)| ≥ |Sv| and statement (iii) holds. If v /∈ S′, then the fact that kv ≥ r(v) + 2 implies
that S′ must contain at least one vertex of a subtree Tw for a child w of v with f(w) = 0. Hence
we have that |S′ ∩ V (Tv)| ≥ |Sv| and statement (iii) is true also in this case.

Now suppose that v is not added to S. Since statement (iii) holds for all children of v and
v /∈ S, statement (iii) is trivially true for v. Let us argue why statements (i) and (ii) hold.
If n(v) = 0, then for every child w with n(w) = 1 just before v is processed there is another
child w′ 6= w with f(w′) = 1. Hence every child w with n(w) = 1 just before v is processed
is kw-connected to S, since it has a w–Sv fan of order kw − 1 and one additional path from
w via v to a vertex of S ∩ V (Tw′) for some child w′ 6= w with f(w′) = 1; the same holds for
each descendant w′′ of w with n(w′′) = 1. Hence Sv is a vector connectivity set for Tv, and
statement (i) holds in this case. If n(v) = 1 and kv ≤ r(v), then at least one vertex w ∈ V (Tv)
is (kw − 1)-connected to Sv (in fact, to Sw), but needs a path from w to a vertex of S outside
Tv to become kw-connected to S. Clearly, adding the parent p of v to Sv ensures that all such
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vertices w become kw-connected to Sv ∪ {p}. If n(v) = 1 and kv = r(v) + 1, then every vertex
w in Tv with n(w) = 1 that is (kw − 1)-connected to Sv becomes kw-connected to Sv ∪ {p}. In
either case, statement (ii) holds.

Finally, assume that v is the root of T . Then we set n(v) = 0, so we need to show that
statement (i) holds. This is clearly the case if v is added to S, since then every descendant w
of v with n(w) = 1 becomes kw-connected to Sv. If v is not added to S, then kv ≤ r(v) and
for every child w of v with n(w) = 1, there is another child w′ 6= w such that f(w′) = 1 and
consequently there is a path from w via v to a vertex of S outside Tw. Hence Sv = S is a vector
connectivity set for Tv = T , and statement (i) also holds in this case. If v was not added to S,
then the validity of statement (iii) immediately follows from the fact that statement (iii) holds
for every child of v. Suppose v was added to S, and let S′ be any vector connectivity set for T .
Since statement (iii) holds for any child w of v, we have that |S′ ∩ V (Tw)| ≥ |Sw|. Just like in
the case where v is not a leaf and not the root, we have that |S′ ∩ V (Tv)| ≥ |Sv| regardless of
whether or not v ∈ S′. Hence statement (iii) is true also in this case.

Since these statements hold for the root of T , the set S constructed by the algorithm is a
vector connectivity set for T of minimum size. The observation that all steps of the algorithm
can be performed in polynomial time completes the proof of Theorem 4.

7 Concluding Remarks

In this paper, we initiated the study of the Vector Connectivity problem, which opens
a research path with many interesting questions. The most prominent of these questions is
of course the computational complexity of Vector Connectivity on general input graphs.
Could it be that the problem is polynomial-time solvable on all graphs, or is its tractability
heavily dependent on either the absence of long induced paths or on a tree-like structure of the
input graph? On which other graph classes is Vector Connectivity solvable in polynomial
time? Does Vector Connectivity admit a polynomial-time constant-factor approximation
algorithm on general graphs?

Another interesting variant of the problem can be obtained by allowing the requirement kv
of each vertex v to be arbitrarily large, in which case a vertex v with kv > dG(v) is forced to
be in every vector connectivity set. Is it perhaps easier to prove this variant to be NP-hard in
general? Note that the algorithms given in this paper, except the algorithm for split graphs,
work in polynomial time also for this variant. Is this variant polynomial-time solvable on split
graphs?
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